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A G R I C U L T U R E

Large-scale whole-genome resequencing unravels 
the domestication history of Cannabis sativa
Guangpeng Ren1,2*†, Xu Zhang2†‡, Ying Li2†, Kate Ridout1,3, Martha L. Serrano-Serrano1, 
Yongzhi Yang2, Ai Liu2, Gudasalamani Ravikanth4, Muhammad Ali Nawaz5,6, 
Abdul Samad Mumtaz7, Nicolas Salamin8, Luca Fumagalli1,9*

Cannabis sativa has long been an important source of fiber extracted from hemp and both medicinal and recre-
ational drugs based on cannabinoid compounds. Here, we investigated its poorly known domestication history 
using whole-genome resequencing of 110 accessions from worldwide origins. We show that C. sativa was first 
domesticated in early Neolithic times in East Asia and that all current hemp and drug cultivars diverged from an 
ancestral gene pool currently represented by feral plants and landraces in China. We identified candidate 
genes associated with traits differentiating hemp and drug cultivars, including branching pattern and cellulose/
lignin biosynthesis. We also found evidence for loss of function of genes involved in the synthesis of the two 
major biochemically competing cannabinoids during selection for increased fiber production or psychoactive 
properties. Our results provide a unique global view of the domestication of C. sativa and offer valuable genomic 
resources for ongoing functional and molecular breeding research.

INTRODUCTION
Few crops have been under the spotlight of controversy as much as 
Cannabis sativa. As one of the first domesticated plants, it has a 
long and fluctuating history interwoven with the economic, social, 
and cultural development of human societies. Once a major source 
for textiles, food, and oilseed as hemp, its exploitation to that end 
declined in the 20th century, while its use as a recreational drug 
(i.e., marijuana, which is illegal in many countries) has broadened. 
Although much debated in the past, it is currently widely accepted 
that the genus Cannabis comprises a single species, C. sativa L., 
hereafter also referred to as Cannabis [reviewed in (1)]. The plant is 
annual, wind-pollinated, and predominantly dioecious. It is diploid, 
with 10 pairs of chromosomes (2n = 20) and is characterized by an 
XY/XX chromosomal sex-determining system, with a genome size 
of about 830 Mb (2–4). On the basis of distribution and archaeobo-
tanical data, a wide region ranging from West Asia through Central 
Asia to North China has often been suggested as the origin of culti-
vation for the plant, with its later spread worldwide coinciding with 
continuous artificial selection and extensive hybridization between 
locally adapted, traditional landraces and modern commercial cultivars. 

Clandestine drug breeding and the propensity of domestic plants to 
become feral (and possibly to have admixed with their wild ancestors) 
have contributed to the difficulties for reconstructing the species’ 
domestication history [reviewed in (3, 5, 6)].

Recently, there has been renewed global interest in the therapeu-
tic potential of Cannabis, given its unique chemical components 
(7). Cannabis hemp and drug types also differ in their relative yield 
of cannabidiolic acid (CBDA) and 9-tetrahydrocannabinolic acid 
(THCA), the two most abundant and studied of at least 100 unique 
secondary metabolites known as cannabinoids (8). After decarbox-
ylation, their bioactive forms (the well-known CBD and psychoac-
tive THC) bind to endocannabinoid receptors in an animal’s central 
nervous system, eliciting a broad range of effects, some of which may 
alleviate symptoms of neurological disorders (9–14). Hemp cultivated 
for fiber typically produces higher concentrations of CBDA than 
THCA, whereas marijuana contains very high amounts of THCA and 
much higher overall levels of cannabinoids. Hybrid cultivars with 
high CBDA content are currently developed for medical use. Hemp 
and marijuana have been consequently given separate statutory defi-
nitions, either based on a threshold of THC concentration (e.g., 0.3% 
dry weight in the European Union and the United States) or based on 
their chemical phenotype or chemotype [i.e., high, low, or intermediate 
ratio of THCA to CBDA characterizing, respectively, plants that contain 
predominantly THCA, predominantly CBDA, or both cannabinoids 
in approximately equivalent ratios (15)]. Despite an increasing need 
to produce varieties with specific cannabinoid profiles for therapeutic 
and recreational exploitation, and recent important contributions to our 
understanding of the structural and functional divergence as well as 
inheritance of their underlying synthase genes (16–20), the mechanisms 
mediating the evolution of these genes are still not clearly known.

Despite its ancient use dating back thousands of years, the ge-
nomic history of domestication of Cannabis has been understudied 
compared to other important crop species, largely due to legal 
restrictions. Recent genomic surveys applying genotyping-by- 
sequencing on mostly Western commercial cultivars highlighted 
a marked genome-wide differentiation between hemp and drug 
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types, a result also shown by anonymous short tandem repeat markers 
(21–24). However, given the large gaps in our knowledge of the evo-
lutionary history of domestication of Cannabis, a comprehensive 
reconstruction of the events responsible for the latter requires large-
scale comparison of genomic data covering the full end use and geo-
graphic range, which is presently still lacking (6, 25). On the basis 
of an unprecedented global sampling effort, we provide here such 
framework by compiling 110 whole genomes covering the full spec-
trum of wild-growing feral plants, landraces, historical cultivars, 
and modern hybrids from both hemp and drug types, with a partic-
ular focus on central and eastern Asia because of their hypothesized 
importance for the species’ origins of domestication (3, 5).

RESULTS AND DISCUSSION
Population genetic analyses
Our dataset combines new data (82 genomes) with publicly avail-
able whole genomes from 28 hemp and drug types (Fig. 1A and 
table S1). After mapping to the reference CBDRx genome (18), we 
identified 12,010,905 putative single-nucleotide polymorphisms (SNPs) 
that passed filtering criteria across the 104 Cannabis accessions re-
tained for subsequent analyses (fig. S1; see Materials and Methods). 
We characterized the genetic relationships among all Cannabis 
accessions using maximum likelihood (ML) phylogeny (rooted on 
Humulus lupulus), as well as admixture and principal component 
analysis (PCA; Fig. 1). All our analyses show a strong clustering of 
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Fig. 1. Population structure of Cannabis accessions. (A) Geographic distribution (i.e., sampling sites of feral plants or country of origin of landraces and cultivars) of the 
samples analyzed in this study. Color codes correspond to the four groups obtained in the phylogenetic analysis and shapes indicate domestication types. The two empty 
red squares symbolize drug-type cultivars obtained from commercial stores located in Europe and the United States. For sample codes, see table S1. (B) Maximum likelihood 
phylogenetic tree based on single-nucleotide polymorphisms (SNPs) at fourfold degenerate sites, using H. lupulus as outgroup. Bootstrap values for major clades are shown. 
(C) Bayesian model–based clustering analysis with different number of groups (K = 2 to 4). Each vertical bar represents one Cannabis accession, and the x axis shows the 
four groups. Each color represents one putative ancestral background, and the y axis quantifies ancestry membership. (D) Nucleotide diversity and population divergence 
across the four groups. Values in parentheses represent measures of nucleotide diversity () for the group, and values between pairs indicate population divergence (FST). 
(E) Principal component analysis (PCA) with the first two principal components, based on genome-wide SNP data. Colors correspond to the phylogenetic tree grouping.
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Cannabis accessions into four well-separated genetic groups. 
The first group (thereafter Basal cannabis, group A; Fig. 1B and 
fig. S2) includes 14 feral plants and landraces collected in China and 
2 feral plants from the United States [most likely originating from 
19th-century Chinese landraces (5)]; this group is sister to all other 
Cannabis accessions. The second group (Hemp-type, group B) in-
cludes hemp varieties distributed worldwide (5 feral plants, 13 land-
races, and 20 cultivars). The third group (Drug-type feral, group C) 
contains at its base 3 feral samples collected in southern China, 11 feral 
plants collected in India and Pakistan south of the Himalayas, and 
one drug cultivar from India. The fourth group (Drug-type, group D) 
includes cultivated drug varieties distributed worldwide (35 cultivars). 
We found complete congruence between the four phylogenetically 
defined clusters and the commercial labels, current or historical 
end-use designation and/or predominant geographic origin of the 
accessions. However, to avoid bias due to potential ancestry admix-
ture, we also conducted most downstream analyses excluding ad-
mixed samples as identified by the structure analysis (Fig. 1, C and E; 
see Materials and Methods for further explanations; all results are in 
the Supplementary Materials).

Contrary to a widely accepted view, which associates Cannabis 
with a Central Asian center of crop domestication [mostly based on 
feral plant distribution data, e.g., (26)], our results are consistent 
with a single domestication origin of C. sativa in East Asia, in line 
with early archaeological evidence (see below). The results also in-
dicate that some of the current Chinese landraces and feral plants 
represent the closest descendants of the ancestral gene pool from 
which hemp and marijuana landraces and cultivars have since de-
rived. East Asia has been shown to be an important ancient hot spot 
of domestication for several crop species, including rice, broomcorn 
and foxtail millet, soybean, foxnut, apricot, and peach [reviewed in 
(27–29)]; our results thus add another line of evidence for the im-
portance of this domestication hot spot. Our analyses show that all 
hemp-type samples (group B) are reciprocally monophyletic to all 
drug-type samples (both feral and cultivars; groups C and D), indic-
ative of independent breeding trajectories with remarkably little 
evidence for complex patterns of gene flow among end-use types 
during global expansion. More specifically, the phylogenetic tree 
topology suggests (i) a Chinese origin for modern hemp cultivars, 
illustrated by Chinese hemp landrace accessions (NER) at the most 
basal position of Hemp-type group B (fig. S2); (ii) substantial differ-
entiation between drug-type feral plants and one cultivar from an 
area covering both sides of the Himalayan range (group C), and 
modern European and American marijuana cultivars (group D) 
that have arisen via intense recent selection for high THC content 
(as also indicated by reciprocally high FST values among drug groups 
C and D; Fig. 1D); and (iii) a distinct breeding history for marijuana 
samples from equatorial regions (MSA, PEU, SWD, HMW, and THD; 
for sample codes, see table S1), which tend to occupy a basal position 
among the group’s subclades compared to the majority of modern 
commercial drug-type cultivars. Archaeological and historical sources 
are overall consistent with our phylogenetic analyses (see below). 
In addition, similar levels of genetic diversity between basal group A 
and the other groups, the clustering of feral plants in basal group A 
together with cultivated landraces (NEB), and the presence of 
wild-growing feral plants from Central Asia nested within the 
Hemp-type group B (Fig. 1D and figs. S2 and S3) indicate that all 
feral plants studied here are not wild types, but historical escapes from 
domesticated forms. Although additional sampling of feral plants in 

these key geographical areas is still needed, our results, which are 
based on very broad sampling already, would suggest that pure wild 
progenitors of C. sativa have gone extinct (3, 5).

Demographic history
The strong selection likely exerted on Cannabis through its long 
domestication process is expected to substantially affect the effective 
population size (Ne) of the existing genetic clusters. To address this 
issue, we estimated Ne using the pairwise sequentially Markovian 
coalescent (PSMC) method (30) and found that all four groups ex-
hibited similar demographic trajectories (Fig. 2A and fig. S4). The 
ancestral Ne of Cannabis reached a peak at ~1 million years ago, 
followed by a continuous decline until the end of the last glacial 
maximum [~20,000 years before the present (B.P.)]. We further 
used coalescent simulations to model the recent demography of 
Cannabis. Drug-type feral and Drug-type genetic clusters were 
treated as one group to reduce model comparisons and parameters. 
Eighteen alternative models were defined to test bottlenecks and/or 
growth of the Basal cannabis group, Hemp-type group, and the in-
tegrated drug-type group with or without migration between these 
groups (fig. S5). The model involving a multistep domestication 
process (with changes in all population sizes and continuous post- 
domestication introgression from Basal cannabis/feral populations 
to both hemp and drug types) produced a significantly better fit than 
alternative models (Fig. 2B, figs. S6 and S7, and tables S2 and S3). 
The shared haplotypes between Basal cannabis and other groups were 
also shown in identity-by-descent analysis (fig. S8).

Our genome-wide analyses corroborate the existing archaeobo-
tanical, archaeological, and historical record [reviewed in (5, 6, 31–33)] 
and provide a detailed picture of the domestication of Cannabis and 
its consequences on the genetic makeup of the species. Our genomic 
dating suggests that early domesticated ancestors of hemp and drug 
types diverged from Basal cannabis ~12,000 years B.P. (95% confi-
dence interval: 6458 to 15,728 years B.P.; Fig. 2B and table S3), indi-
cating that the species had already been domesticated by early 
Neolithic times. This coincides with the dating of cord-impressed 
pottery from South China and Taiwan (12,000 years B.P.), as well as 
pottery-associated seeds from Japan (10,000 years B.P.). Archaeo-
logical sites with hemp-type Cannabis artifacts are consistently found 
from 7500 years B.P. in China and Japan, and pollen consistent with cul-
tivated Cannabis was found in China more than 5000 years B.P. Only 
a small number of early domesticated Cannabis strains expanded to 
later form hemp and drug types ~4000 years B.P., a time when multi-
ple fiber artifacts appear in East Asia, and when fiber-grown Cannabis 
was spreading westward into Europe and the Middle East, as shown 
by Bronze Age archaeological evidence. Ritualistic and inebriant 
use of Cannabis has in turn been documented in Western China 
from archaeological remains at least 2500 years B.P. (34, 35). The 
first archaeobotanical record of C. sativa in the Indian subcontinent 
dates back to ~3000 years B.P., the species likely being introduced 
from China together with other crops (36, 37). In contrast with East 
Asia, historical texts from India from as early as 2000 years B.P. indicate 
that the species was only exploited for drug use. Over the next cen-
turies, drug-type Cannabis traveled to various world regions, in-
cluding Africa (13th century) and Latin America (16th century), 
progressively reaching North America at the beginning of the 20th cen-
tury and later, in the 1970s, from the Indian subcontinent. Mean-
while, hemp-type cultivars were first brought to the New World by 
early European colonists during the 17th century and later replaced 
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in North America by Chinese hemp landraces by the middle 1800s. 
Consistent with this history, our model shows a gradual increase in the 
Ne of hemp and drug types. On the basis of both demographic and 
phylogenetic analyses, we propose that early domesticated Cannabis 
was first used as a primarily multipurpose crop until ~4000 years B.P., 
before undergoing strong divergent selection for increased fiber or 
drug production.

Selection signatures during domestication and improvement
As with other crop species, the domestication and diversification of 
Cannabis involved several complex steps, leading to a geographical 
radiation and the deliberate breeding of varieties involving selection 
on traits to maximize yield and quality (38). We applied an integra-
tive approach (, FST, and XP-CLR; see Materials and Methods) to 
identify candidate genes involved in divergence of hemp and drug 

types after their early domestication. The three approaches com-
bined allowed us to identify a total of 510 candidate genes in hemp-
type samples and 689 in drug-type samples, when compared to the 
Basal cannabis group, of which 253 are overlapping (fig. S9), while 
134 and 472 genes are specific to hemp- and drug-improved culti-
vars, respectively, when compared to each other (tables S4 to S9). 
Several genes bearing signals of positive selection in hemp-type–
improved cultivars are involved in inhibiting branch formation 
(e.g., D14 and KNAT1), associated with flowering time and photo-
periodism (e.g., FLK and EHD3) and involved in cellulose and lig-
nin biosynthesis (e.g., SS and SPS1). In drugs, we infer selection on 
genes promoting branch formation (e.g., NDL2 and DTX48), asso-
ciated with flowering time (e.g., HUA2 and FPF1) and involved in 
lignin biosynthesis (e.g., CSE and C4H; Fig. 2, C and D, and tables 
S10 and S11). In addition, we also detected signals of positive 
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selection in drug-type cultivars when compared to hemp-type culti-
vars on the gene HDR (tables S5 and S10) coding for the last enzyme 
in the methylerythritol phosphate pathway (producing essential 
substrates for cannabinoid biosynthesis) and which has been shown 
to be potentially associated with variance in total cannabinoid con-
tent [i.e., potency (18)]. These results are consistent with traits 
expected to have been affected by selection during domestication of 
C. sativa, i.e., leading to unbranched, tall hemp plants maximizing 
cellulose-rich/lignin-poor bast fibers in the stems versus well-branched, 
short marijuana plants with lignin-rich woody cores, maximizing 
flower and resin production (3, 39, 40).

Loss of function of the two main cannabinoid synthase 
genes during domestication
The two main cannabinoids CBDA and THCA characterizing hemp- 
and drug-type varieties are produced in a biosynthetic reaction cat-
alyzed by the enzymes CBDA and THCA synthase, which compete 
for the same substrate cannabigerolic acid (CBGA) [reviewed in 

(8)]. The two synthases are encoded by the genes CBDAS and THCAS, 
which belong to the berberine bridge enzyme (BBE)–like multigene 
family, from which they possibly arose by duplication and neofunc-
tionalization [reviewed in (41)]. When involved in secondary 
metabolism, the homologs of these genes likely play a major role in 
chemical plant defense (8). Confirming earlier genetic studies, 
recent genome assemblies showed that CBDAS and THCAS (and 
their multiple pseudogenic copies) lie scattered within closely linked 
loci, in a retrotransposon-rich, highly repetitive region of the ge-
nome with suppressed recombination, and with a history of ex-
tensive rearrangement and tandem duplication/pseudogenization 
events (4, 16–19). Using strict filtering criteria, we mapped the reads 
of the 104 analyzed genomes to a reference CBDA/THCA hybrid 
cultivar genome [Jamaican Lion DASH (42)], in which full-length 
coding sequences for THCAS, CBDAS, and more than 30 pseudogene 
copies of these genes are assembled. The results (Fig. 3A) show that all 
marijuana cultivars from the Drug-type genetic group D always map 
a complete coding sequence for THCAS and two CBDAS pseudogenes 
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Fig. 3. Evolution of CBDAS and THCAS. (A) Occurrence of CBDA-synthase gene (CBDAS), THCA-synthase gene (THCAS), and two CBDAS pseudogenes across 104 Cannabis 
accessions, based on mapping to a reference genome having both genes and many pseudogene copies of them [Jamaican Lion DASH (42)]. Cladogram on top and 
symbols are as in Fig. 1. For sample codes, see table S1. Below the cladogram is indicated for each gene whether reads from each sample mapped to the reference posi-
tions. The height of each gene box represents the length of the gene. The Jamaica Lion DASH genome sequence coordinates for the four genes are shown on the right. 
(B) Top left: Phytocannabinoids CBDA and THCA result from a biosynthetic reaction catalyzed respectively by the enzymes CBDA and THCA synthase from the common 
precursor CBGA. Bottom: The proportion of CBDAS and THCAS in each of the four groups. Top right: The proportion of CBDAS and THCAS in landraces versus cultivars 
within the Hemp-type group. Fisher’s exact test, *P < 0.05; ***P < 0.001. (C) Transcriptomic expression for the two genes and pseudogenes in different tissues and vegeta-
tive stages [data from (47)]. Wilcoxon rank-sum test, *P < 0.05.
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(with 93 to 94% similarity to the full CBDAS; pseudogenes 1 and 
2 in Fig. 3A; see Materials and Methods), with the exception of only 
five samples that also map a full CBDAS gene. Conversely, within 
the Hemp-type genetic group B constituted of plants selected for 
fiber production, all accessions only map a complete sequence for 
CBDAS, with the exception of nine samples (mostly landraces; 
Fig. 3B) that either map both genes and the CBDAS pseudogenes or 
map THCAS and the CBDAS pseudogenes. The main pattern inferred 
from our comparative analysis confirms previous structural data based 
on full genome sequencing of single cultivars (18, 19). It is also con-
sistent with published chemotype inheritance models validated 
among a wide variety of Cannabis accessions (16, 17, 20, 43, 44), 
thus providing complementary evidence for the latter at the genomic 
sequence level and global validation across a comprehensive panel 
of Cannabis domestication types distributed worldwide. Although 
our results would require confirmation with associated phenotypic 
or expression data, they nevertheless provide support for a genetic 
model of inheritance based on CBDAS genotyping (20), in which 
plants that are homozygous for functional or nonfunctional alleles 
of CBDAS have the CBD-type or THC-type chemotype, respective-
ly, whereas plants that are heterozygous have the intermediate-type 
chemotype (consistent with codominant Mendelian inheritance due 
to the documented physical linkage of the two synthase genes). The 
occurrence of five samples mapping full THCAS and two CBDAS 
pseudogenes (i.e., with a presumed THC chemotype) nested within 
the Hemp-type genetic group and, more generally, the scattered 
phylogenetic clustering of synthase gene combination (i.e., of more 
than one presumed chemotype class) across the Hemp-type and 
Drug-type genetic groups provide a compelling argument for the 
independence of cannabinoid synthase inheritance from a multi-
tude of other positively selected traits differentiating fiber-type 
from drug-type Cannabis [see also the high-CBDA cultivar CBDRx, 
which has full CBDAS and lacks full THCAS (i.e., CBD chemotype) 
but clusters genetically among marijuana cultivars; figure 1 in (18)]. 
As such, the results call into question, from both a biological and 
functional point of view, the current binary categorization of 
Cannabis plants as “hemp” or “marijuana” derived from the assign-
ment to a single phenotype [see also (20)].

In contrast with these results, samples belonging to the Basal 
cannabis group (and to a lesser extent to the Drug-type feral group) 
show a more variable pattern, with the presence of one or another 
synthase gene, or co-occurrence. Overall, our results point to a loss 
of complete coding THCAS or CBDAS sequence during intensive 
and recent selection for increased fiber production or psychoactive 
properties, respectively (Fig. 3B). They suggest the ancestral posses-
sion of both genes in a functional state, a polymorphic condition 
before or during the early stages of domestication with loss of func-
tion of one of the two synthase genes, and the extensive loss of full 
THCAS in hemp-type and CBDAS in drug-type cultivars due to 
strong selection for beneficial crop phenotypes (Fig. 3, A and B).

The pseudogenization of CBDAS and exclusive presence of full 
THCAS in marijuana cultivars are consistent with artificial selec-
tion of high THCA synthesis through the suppression of competi-
tion between the two synthase enzymes for their common substrate 
CBGA [Fig. 3B; (45, 46)], possibly also because CBDA synthase has 
been shown to be a superior competitor for CBGA when both syn-
thases are present (17). The predominant occurrence of CBDAS and loss 
of function of THCAS in hemp types, by contrast, is more puzzling. 
Our analysis of transcriptomics data (47) from a cultivar having 

both synthase genes and the two CBDAS pseudogenes reveals that 
the expression level of CBDAS is always significantly higher than 
that of THCAS, although both are expressed in all tissues and vege-
tative stages (Fig. 3C). A functional CBDAS does not seem a prereq-
uisite for good quality fiber production in hemp [e.g., hemp cultivar 
Santhica 27, lacking both synthase genes (FSA in Fig. 3A) and known 
to mostly produce CBGA (48)], but it is plausible that CBDA-synthase 
activity (and/or the corresponding loss of that of THCA synthase) may 
have allowed increased bast fiber production via a physiological 
trade-off. Although such a trade-off might appear unlikely, it would 
resonate with the known role played not only in plant defense but 
also in the processes of cell wall biosynthesis and/or immunity by the 
primordial BBE-like enzymes from which cannabinoids evolved 
(49, 50). Of course, the loss of full THCAS sequence observed in 
modern hemp types may also simply reflect selective breeding of 
varieties with very low levels of THCA licensed for cultivation.

Conclusion
Together, our genomic, phylogenetic, and demographic analyses 
of 110 diverse C. sativa accessions have identified the time and ori-
gin of domestication, post-domestication divergence patterns and 
present- day genetic diversity, and genomic structure of an exhaustive 
worldwide panel of Cannabis wild-growing feral, landrace, and cul-
tivar representatives. Our study thus provides new insights into the 
domestication and global spread of a plant with divergent structural 
and biochemical products at a time in which there is a resurgence of 
interest in its use (39, 51, 52), reflecting changing social attitudes 
and corresponding challenges to its legal status in many countries. 
Our analysis has detected genes putatively under divergent selec-
tion between hemp- and drug-use accessions and has specifically 
disentangled the effects of domestication on the evolution of the 
chief cannabinoid genes targeted for their medical properties. Our 
results provide support for an evolutionary scenario that accounts 
for the variability in cannabinoid composition among plants as a 
result from artificial selection by early farmers for loss-of-function 
mutations (53). Our results also offer an unprecedented base of 
genomic resources for ongoing molecular breeding and functional 
research, both in medicine and in agriculture.

MATERIALS AND METHODS
Samples, sequencing, quality control, and mapping
A total of 82 C. sativa samples representing both hemp and drug types 
at different stages in the domestication process (i.e., wild-growing 
feral plants, landraces, and cultivars) were collected (Fig. 1A and 
table S1). Seeds or leaves were either obtained from agronomic 
companies, germplasm collection (Vavilov Institute of Plant Genetic 
Resources, St. Petersburg, Russia), and commercial stores or col-
lected in the field in Switzerland, China, India, Pakistan, and Peru 
to cover a wide end-use (in particular for feral plants and landraces, 
which were underrepresented in previous genomic studies) and 
geographic distribution, including the presumed origins of domes-
tication of the species. We caution, however, that the precise breed-
ing history of drug accessions is often unclear, due to years of 
clandestine growing (23). For each sample, genomic DNA was ex-
tracted from leaf samples (after seed germination) and paired-end 
sequencing libraries were constructed according to the Illumina 
library preparation protocol. Sequencing was carried out on an 
Illumina HiSeq2500 platform at Lausanne Genomic Technologies 
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Facility (University of Lausanne). All samples were sequenced to a 
target coverage of 10×. In addition, we downloaded and reanalyzed 
whole-genome sequencing data of 28 hemp- and drug-type samples 
mostly representing North American cultivars (references in table 
S1), resulting in a total sampling size of 110 C. sativa accessions. 
The whole-genome Illumina data of H. lupulus were downloaded as 
outgroup (54) (GenBank accession no. DRR024392).

For raw sequencing reads, Trimmomatic (55) was used to re-
move adapter sequence and cutoff bases from either the start or the 
end of reads when the base quality was <20. We discarded reads if they 
were shorter than 36 bases after trimming. We used the most complete 
and contiguous chromosome-level assembly to date as the reference 
genome [i.e., CBDRx (cs10 v.1.0) (18, 56)], which has an effective 
length of ~737 Mb and contig N50 of 1.96 Mb. We then mapped all 
reads to this reference genome with default parameters implemented 
in bwa v0.7.17 using the Burrows-Wheeler Alignment-Maximal 
Exact Match (BWA-MEM) algorithm (57). This resulted in an average 
depth of coverage of 12.5× (4.4 to 31.4×) and an average mapped 
coverage of 94.3% (75.3 to 99.1%; table S1). Labeling of read groups 
was then corrected using AddOrReplaceReadGroups in Picard v2.2.1 
(http://broadinstitute.github.io/picard). To account for the occur-
rence of polymerase chain reaction duplicates introduced during 
library construction, we used MarkDuplicates in Picard to remove 
reads with identical external coordinates and insert lengths. Local 
realignment was performed to correct for the misalignment of 
bases in regions around insertions and/or deletions (indels) using 
RealignerTargetCreator and IndelRealigner in Genome Analysis 
Toolkit (GATK) v3.8 (58), generating for each sample a realigned 
Binary sequence Alignment/Map file.

Filtering alignments
Alignments that were not of sufficiently high quality for SNP detec-
tion and subsequent analyses were removed. We removed align-
ments using the following stepwise protocol: (i) discard reads that 
do not map uniquely, (ii) discard bases with a quality <20, (iii) only 
use reads for which a mate can be mapped, (iv) discard reads with a 
mapping quality <30, and (v) discard “bad” reads with flag ≥255.

SNP and genotype calling
We used GATK v3.8 (58) for multisample SNP and genotype call-
ing. Reads after local realignment were first sent to HaplotypeCaller, 
and haplotypes were called by sample. The generated per-sample 
genomic variant call formats (GVCFs)genomic variant call formats 
(GVCFs) were then passed to GenotypeGVCFs, which produced a set 
of joint-called VCF file ready for filtering. A number of filtering steps 
were then performed to reduce false positives for SNP and genotype 
calling: (i) remove SNPs with more than two alleles, (ii) remove SNPs 
with mean depth values over all samples less than 4 and greater than 
50, (iii) assign genotypes as missing if their quality scores (GQ) were <10, 
(iv) remove SNPs with minor allele frequency < 0.05, and (v) SNPs were 
retained only if they could be genotyped in at least 70*/% of the samples. 
This yielded a total of ~12,011 million SNPs for downstream analyses.

Relatedness analysis
We used the KiNG program (59) to estimate degrees of relatedness 
between all samples based on pairwise comparisons of SNP data. 
Those pairs exhibiting greater than third-degree relationships (six 
samples; fig. S1) were removed, leaving a total of 104 samples for 
subsequent analyses.

Population structure analysis
To visualize the genetic relationships among samples, we first per-
formed a PCA using package “SNPRelate” in R (60) based on the 
~12 million SNP dataset. We extracted fourfold degenerate sites 
from the SNP dataset for population structure and phylogenetic 
analyses. Admixture v1.3.0 (61) was used to quantify the genome- 
wide admixtures among all Cannabis samples. Admixture was run 
for each possible group number (K = 2 to 4) with 1000 bootstrap 
replicates. We used RAxML v8.2.11 (62) to generate an ML phylo-
genetic tree. The program was run with 100 bootstrap repetitions 
using H. lupulus as outgroup. Because admixture is known poten-
tially to lead to spurious claims of population history and selection, 
we repeated all potentially affected analyses (diversity, demography, 
and selection analyses described below) by removing admixed sam-
ples based on population structure analysis and a critical assign-
ment value >90% to one of the four phylogenetic groups (samples 
left: N = 45; Fig. 1C and table S1). Conclusions based on the pruned 
dataset, however, remain largely unchanged (Supplementary Text).

Demographic history
We used the PSMC model (30) to infer the demographic history of 
the four Cannabis genetic groups inferred from the phylogenetic 
analysis (i.e., Basal cannabis, Hemp-type, Drug-type feral, and 
Drug-type; Fig. 1B) based on the results of population structure 
analyses. This method reconstructs the history of changes in popu-
lation size over time using the distribution of the most recent com-
mon ancestor between two alleles within an individual. Because 
PSMC leads to a systematic underestimation of true event times at 
low sequencing depth, we selected four samples with the highest 
mean coverage from each of the four groups to ensure the quality of 
consensus sequences. Consensus sequences were obtained using 
SAMtools v1.3 (63) and divided into nonoverlapping 100–base pair bins. 
The following parameters were used: -N25 -t15 -r5 -p ‘4+25×2+4+6’. 
A generation time of 1 year and a rate of 2.5 × 10−9 mutations per 
nucleotide per year (64) were used to convert the scaled times and 
population sizes into real times and sizes.

As PSMC inference does not have sufficient power for recent 
datings owing to limited recombination events in a short time period 
(30), we also inferred the demographic history of Cannabis using a 
coalescent simulation–based composite-likelihood approach imple-
mented in the fastsimcoal v2.5.1 (65) using fourfold degenerate sites. 
To reduce model comparisons and parameters, we treated Drug-type 
feral and Drug-type as a single group. The topology of the three 
groups was fixed based on the phylogenetic tree (Fig. 1B) and our 
main purpose was thus to estimate divergence times, changes in 
population sizes, and migration rates between groups. We set in 
total 18 models, in which odd number models showed all possible 
changes in population sizes without migration between groups and 
even number models contained migration events on the basis of the 
odd number models (fig. S5). We extracted a total of 4,757,868 four-
fold degenerate sites across the whole genome, and 3,8741,669 sites 
were retained after filtering. Three-dimensional folded site frequency 
spectrum (SFS) based on these sites was estimated following (65). 
We did 200 independent runs with varying starting points to ensure 
convergence and retained the fitting with the highest likelihood value. 
Estimates for each run were obtained from 100,000 simulations 
per likelihood estimation (-n100,000, -N100,000), 40 expectation/
conditional maximization cycles (-L40). The global maximum like-
lihood model was selected after correcting for number of estimated 

http://broadinstitute.github.io/picard
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parameters using Akaike information criterion. Parametric confi-
dence intervals were obtained by 100 parametric bootstraps, with 
50 independent runs in each bootstrap on simulated data under 
the most likely model. Simulated spectrum with the most likely 
model was compared with the observed spectrum to evaluate the 
accuracy of the calculations (fig. S7).

Linkage disequilibrium analyses
We compared the patterns of linkage disequilibrium (LD) among 
different groups that were identified based on either population 
structure analyses or domesticated types. The squared correlation 
coefficient [r2; (66)] between pairwise SNPs was calculated to esti-
mate the decay of LD using the software PopLDdecay v3.29 (67). 
The average r2 value was measured in a 500-kb window size. To 
balance the genetic diversity within each group, we randomly se-
lected 15 samples from each group for this analysis. We found that 
the decay rates of LD (expressed as r2) in Cannabis calculated on 
either domesticated types or population structure were similar. LD 
decayed to half at a range of 3.9 to 6.0 kb (fig. S10 and table S12), 
which is much more rapid than that recently reported in other 
crops, such as rice [123 and 167 kb in subsp. indica and subsp. 
japonica (68)], soybean [133 kb (69)], and cotton [296 kb (70)]. The 
long-distance dispersal of pollen [crossing can occur at a span of 
over 300 km (71)] and recent extensive hybridization by breeders 
(72) may account for the rapid LD decay in Cannabis.

Genome-wide patterns of divergence, heterozygosity, 
and nucleotide diversity
To compare genome-wide patterns of divergence and nucleotide 
diversity among the four groups identified by population structure 
(i.e., Basal cannabis, Hemp-type, Drug-type feral, and Drug-type), 
we calculated the FST among the four groups, nucleotide diversity 
(), and Tajima’s D for each group based on the ~12 million SNP 
dataset using a sliding window approach (10-kb window sliding in 
2-kb steps) with VCFtools v0.1.15 (73). The heterozygosity statistics 
by sample was obtained using mlRho v2.9 (74). Patterns of nucleo-
tide diversity and heterozygosity were also calculated for different 
domesticated types of hemp- and drug-type samples. We treated 
the Basal cannabis (excluding one landrace population NEB1-4) as 
hemp, as the feral populations in this group were presumably used 
for fiber production in China. We found that the diversity for dif-
ferent groups were similar (3.00 × 10−3 to 3.87 × 10−3; Fig. 1D and 
fig. S3A) but were substantially higher than that in other crop 
cultivars—the sequence diversity is 1.60 × 10−3 and 0.60 × 10−3 for 
Oryza sativa subsp. indica and subsp. japonica, 0.60 × 10−3 for 
cotton, 1.90 × 10−3 for soybean, and 2.30 × 10−3 for sorghum. The 
feral and landrace samples had relatively smaller Tajima’s D values 
and higher level of heterozygosity than the cultivars (fig. S3, B and 
C), which may result from human artificial breeding and selection.

Screening for selective sweeps
For all the four groups, LD decays to half within 10 kb. Thus, we 
applied a sliding window approach with 10-kb windows sliding in 
2-kb steps to identify genomic regions that may have been subject 
to positive selection during domestication and artificial breeding in 
Cannabis. Windows with more than 10 SNPs were retained for this 
analysis. It should be noted that the groups we defined in our study 
are not actual panmictic populations, but (with the possible excep-
tion of feral plants) evolved independently due to separate breeding 

at presumably small Ne, in particular the hemp- and drug-type cul-
tivars. Nucleotide diversity () and population divergence (FST) are 
the two most commonly used parameters when measuring selective 
signatures in similarly inbred populations, such as crops and do-
mesticated animals [e.g., (75–77)]. However, to reliably identify sig-
natures of selection and to discern selective sweeps from potential 
background divergence caused by bottleneck effects, we combined 
FST,  ratio (e.g., -Hemp-type/-Drug-type), and a third approach 
[the cross-population composite likelihood ratio test (XP-CLR), which 
uses allele frequency differentiation at linked loci to detect selective 
sweeps; https://github.com/hardingnj/xpclr (78)] for each compari-
son to represent the selective signatures, taking the highest 5% value 
as the cutoff. Windows that were identified by all three methods were 
recognized as putative selection sweeps. On the basis of the potential 
evolutionary scenario that we reconstructed, we first compared all 
hemp-type samples (i.e., Hemp-type group) and drug-type samples 
(i.e., Drug-type feral and Drug-type groups) with the Basal cannabis 
group, respectively. The selective sweeps identified by the two com-
parisons could be considered as the improvement-associated regions 
for hemp and drug types, as the Basal group may represent an early 
domestication stage. As differentiation between Drug-type feral and 
Drug-type cultivar was relatively high (FST = 0.097; Fig. 1D), and 
hemp landraces are the result of both artificial selection and region- 
specific environmental conditions, we further compared only hemp 
and drug cultivars for the identification of selective sweeps.

Following the above approaches, we identified 936 nonoverlap-
ping genomic segments (14.92 Mb; 1.70% of the genome; 689 genes; 
table S4) as putative improvement-associated regions selected in 
drug-type samples, and 671 (8.75 Mb; 1.00% of the genome; 510 genes) 
in hemp-type samples. For the comparison between hemp and drug 
cultivars, we identified 178 (2.93 Mb; 0.33% of the genome; 134 genes) 
in hemp cultivars and 628 (11.68 Mb; 1.33% of the genome; 472 genes) 
in drug cultivars. For the comparisons with Basal cannabis, we found 
that 253 genes were coselected in hemp- and drug-type samples.

Annotation of selective sweeps
Functional classification of Gene Ontology (GO) categories was 
performed using the Blast2GO program (79). Enrichment analysis 
was performed and the 2 test was used to calculate the statistical 
significance of enrichment. The P values were further adjusted by 
false discovery rate (FDR). However, no GO was significantly en-
riched after adjustment by FDR (table S13). Domain of genes was 
annotated using InterProScan (80) and mapping to Swiss-Prot and 
TrEMBL protein database. The threshold was set to 1 × 10−5, and 
the results were filtered to only the best Arabidopsis hit. All the pu-
tative selected genes were further annotated by the available Cannabis 
proteome (81).

Presence/absence and variation of THCAS and CBDAS
Previous studies have suggested that hemp and drug types may lack 
fully functional THCAS and CBDAS, respectively (4, 16–19), but 
intermediate situations where both genes are present or absent 
could also exist. In addition, McKernan et al. (42) found that reads 
from these genes and pseudogene copies may be mismapped if many 
pseudogene copies of THCAS and CBDAS were not assembled in a 
reference genome because the DNA sequences for most of these 
copies are more than 90% similar with each other. Although 
13 Cannabis genomes are available in the National Center for Bio-
technology Information (accessed 25 February 2021), most of them 

https://github.com/hardingnj/xpclr
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only have one of the two synthase genes and few pseudogene copies. 
To reliably check for the presence/absence across our dataset of 
CBDAS, THCAS, and two CBDAS pseudogenes (both consistently 
identified in our first mapping results and 93 to 94% similar to the 
original CBDAS; see below), we used the Jamaican Lion DASH (a 
CBDA:THCA hybrid cultivar) genome (42) as a reference (GenBank 
assembly accession no. GCA_003660325.2). Both full coding se-
quences of CBDAS and THCAS and more than 30 pseudogene cop-
ies of these genes were assembled, which ensured that reads could 
be properly mapped to the two genes and two pseudogene copies. 
The same procedure for mapping mentioned above was used. We 
then counted the read depth of all the 104 samples for the two genes 
and two pseudogenes using SAMtools with a base quality of 20 and 
a map quality of 30. Genes were identified as absent if no read could 
be mapped to the corresponding regions of the Jamaican Lion 
DASH genome. We further downloaded transcriptomic data from 
multiple tissues (i.e., root, reproductive leaf, reproductive buds, 
vegetative leaf, four stages of female flower, and four stages of 
trichome) of a cultivar [Cannbio-2 (47)] that has the two genes and 
the two pseudogenes. We mapped the transcriptomic data to the 
Jamaican Lion DASH genome using Bowtie v2.4.1 (82) and estimat-
ed the expression level for each gene using fragments per kilobase of 
exon per million fragments value. The significance of the expres-
sion difference between THCAS and CBDAS for the four stages of 
female flower and four stages of trichome, which had six replicates 
for each, was calculated using Wilcoxon rank-sum test.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/29/eabg2286/DC1

View/request a protocol for this paper from Bio-protocol.
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