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Summary

Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Loss of

this diversity, termed crop genetic erosion, is therefore concerning. While alarms regarding

evident declines in crop diversity have been raised for over a century, themagnitude, trajectory,

drivers and significance of these losses remain insufficiently understood.We outline the various

definitions, measurements, scales and sources of information on crop genetic erosion. We then
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crop wild relatives, diachronic diversity, food
security, plant genetic resources.

provide a synthesis of evidence regarding changes in thediversity of traditional crop landraces on

farms, modern crop cultivars in agriculture, crop wild relatives in their natural habitats and crop

genetic resources held in conservation repositories. This evidence indicates that marked losses,

but also maintenance and increases in diversity, have occurred in all these contexts, the extent

depending on species, taxonomic and geographic scale, and region, as well as analytical

approach. We discuss steps needed to further advance knowledge around the agricultural and

societal significance, as well as conservation implications, of crop genetic erosion. Finally, we

propose actions to mitigate, stem and reverse further losses of crop diversity.

I. Introduction: evolving concerns over loss of crop
diversity

Crop diversity – variation among crop species, their varieties and/or
individual plants – underpins the productivity, resilience and
adaptive capacity of agricultural systems (Gepts, 2006; Hajjar et al.,
2008;Renard&Tilman, 2019; Sirami et al., 2019; Egli et al., 2020).
In traditional agroecosystems, for example, genetically heteroge-
neous ‘crop landraces’ (Table 1) are frequently cultivated in amosaic
of different varieties and of different crop species, spatial diversifi-
cation providing a safeguard against catastrophic loss (Ayeh, 1988;
Zeven, 2002; Jarvis et al., 2008a). This diversity ismanaged through
farmers’ cultivation and selection practices, with local exchange and
gene flow among landraces encouraging genetic variation, and
continued cultivation leading to local adaptation (Bellon, 1996;
Louette et al., 1997; Mercer & Perales, 2010). Occasional intro-
gression from progenitor ‘crop wild relatives’ (Table 1) occurring
nearby can also introduce variation (Jarvis & Hodgkin, 2002).

The crop diversity profile differs in agroecosystems where
production is based on varieties bred by plant scientists and
distributed via private industry or government-sponsored exten-
sion programs (Duvick, 1984). As these ‘modern crop cultivars’
(Table 1) are genetically homogeneous and are typically cultivated
over large geographic areas in monoculture, frequent turnover of
cultivars (i.e. temporal diversification) is used to help keep pace
with biotic and abiotic pressures (Zhu et al., 2000).

The development of agroecosystems where modern crop
cultivars are dominant was encouraged by the rediscovery of
Mendel’s laws of inheritance around the turn of the 20th century,
which offered new explanations for plant breeders’ practices and
provided opportunities to promote novel breeding methods
(Harwood, 2016). Landraces and their wild relatives had been
recognized by scientists as valuable resources since the late 19th

century (Baur, 1914; Zeven, 1998), with ex situ repositories
(genebanks) established not long after to maintain collections in
anticipation of their contributions to breeding for higher yield,
greater pest and disease resistance, and other important traits
(Vavilov, 1926; Lehmann, 1981; Saraiva, 2013).

In parallel, concerns began to be raised over losses of crop
diversity from agricultural change and larger trends including
economic development, globalization and demographic shifts
(Baur, 1914; Harlan & Martini, 1936). As cultivars were derived
from landraces and crop wild relatives, failure to conserve this
diversity – particularly in the absence of widespread efforts to
preserve it in genebanks – was later likened to building ‘our roof
with stones from the foundation’ (Fowler & Mooney, 1991).

In the 1960s, the worldwide promotion of new high-yielding
cultivars and associated agronomic practices as part of the ‘Green
Revolution’ – argued by its proponents as necessary to address
hunger, generate economic stability and secure political alliances –
was thought to be accelerating the replacement of crop landraces
and the destruction of the habitats of their wild relatives (Frankel,
1974; Pistorius, 1997; Fenzi &Bonneuil, 2016). Alarmwas voiced
at the Food and Agriculture Organization of the United Nations
(FAO), where the term ‘genetic erosion’ was coined to describe this
dramatic loss of ‘genetic resources’. These were understood to be
critical to addressing present as well as unforeseen future plant
breeding needs (Bennett, 1964, 1968; Frankel & Bennett, 1970)
(Table 1; Fig. 1). Simultaneously, awareness of the susceptibility of
modern cultivars to pests and diseases as a consequence of their
genetic uniformity was increasing (Table 1), particularly after the
Southern Corn Leaf Blight epidemic of 1970–71 in the USA
(Tatum, 1971;US Senate, 1980). Recommendationsweremade to
widen the genetic variation among cultivars of major staples
(National Research Council, 1972).

An outcome of these concerns was the expansion of national and
international programs to collect andmaintain the genetic diversity
of crops in genebanks (Plucknett et al., 1987). The International
Board for Plant Genetic Resources (IBPGR) was established in
1974 to coordinate a global program to conserve threatened
diversity before it disappeared. IBPGR supported the collecting of
over 200 000 samples of landraces, crop wild relatives and other
genetic resources in 136 countries between 1975 and 1995, and
helped establish international genebank collections to maintain
these samples (Thormann et al., 2019).

By the 1980–1990s, FAO had announced that three-quarters of
previously cultivated crop diversity had disappeared from fields
since the beginning of the century (FAO, 1993), a narrative based
on estimates and broad generalizations, but so evocative that it
continues to bewidely cited (Box 1).Moreover, alongside landraces
and cropwild relatives in the field, scientists were worried about the
vulnerability of the hundreds of thousands of samples conserved ex
situ, due mainly to unstable funding and deficient infrastructure.
Genebanks were encouraged to duplicate their holdings tomitigate
these challenges as well as to protect the resources from natural
disasters, war and civil strife (Holden, 1984; Lyman, 1984; Peeters
& Williams, 1984).

Concerns around the loss of agricultural diversity also began to
expand, coming to include livestock, pollinators, agrarian land-
scapes and wild species providing ecosystem services to farming
(Allen-Wardell et al., 1998; Tisdell, 2003; Garibaldi et al., 2013).
These worries were no longer solely focused on the contribution of
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Table 1 Definitions related to crop genetic erosion.

Term
Definition as applied in this
review Notes Key references

Crop diversity Variation among crop species,
their varieties, and/or
individual plant genotypes and
phenotypes

Crop diversity is commonly conceptualized at three main scales:
species, variety (within species) and genetic (within varieties)

van de Wouw et al. (2009); van
Heerwaarden et al. (2010);
Hufford et al. (2019)

Crop diversity
conservation

The safeguarding of crop
diversity

Crop diversity conservation is commonly accomplished either in
genebanks and other repositories (ex situ) or on-farm/in natural
habitats (in situ). The integrationofbothapproaches is considered
the most robust form of conservation. Various alternative terms
are also common, including ‘genetic resource conservation’ and
‘genetic conservation’ (typically emphasizing conservation for use
in plant breeding and other research) and ‘agrobiodiversity
conservation’ (potentially referring to a wider array of relevant
diversity, with crops being one component)

Bennett (1964, 1968); Frankel
(1970; 1974); Berthaud
(1997); Gepts (2006)

Crop genetic
erosion

The loss of crop diversity in a
given area over a given amount
of time, typically measured by
decline of species, variety and/
or within-variety (genetic/
genomic) variation

A very wide variety of interpretations of the meaning of crop
genetic erosion have been published, including specifying or
limiting the definition to taxonomy level (species, variety,
genetic), genetic resource type (landrace, modern cultivar, crop
wild relative), system (traditional, modern/industrial,
conservation repositories) and whether changes are permanent
and/orpertain to functionaldiversity; aswell as identifying specific
drivers of loss (Supporting Information Table S1). Supplementary
terms have been proposed to fit different interpretations,
including ‘genomic erosion’ in the case of substitution of one crop
type for another or the elimination of the crop entirely, and
‘varietal erosion’or ‘native/landrace cultivar loss’ for decline at the
varietal level. Alternatives such as ‘dediversification’ and
antonyms such as ‘genetic sedimentation’ have also been coined,
although they are not widely used. In this reviewwe embrace the
full array of meanings of the term, noting that decline at the
species and variety/population level generally also equates to loss
of genetic diversity

Bennett (1964, 1968); Frankel &
Bennett (1970); Harlan (1972);
Szab�o (1981); Hawkes (1983);
Wilkes (1989); Zimmerer
(1991); Qualset et al. (1997);
FAO (1998; 2010); Brush
(1999); Sperling (2001); Gepts
(2006), van de Wouw et al.
(2009); Brown & Hodgkin
(2015)

Crop genetic
resources

Reproductive and genetic
materials in crops and theirwild
relatives

This term is widely defined, and can include associated genetic or
phenotypic information. ‘Plant genetic resources’ is a common
alternative term

Frankel & Bennett (1970);
Hawkes (1971);Harlan (1972);
FAO (1998); Gepts (2006)

Crop genetic
uniformity

A high degree of genetic
similarity at relevant loci
among individual genotypes
within a crop variety and/or
among varieties in a given area
(i.e. a narrow genetic base)

While the term is commonly applied in the context of modern/
industrial agriculture, genetic uniformity has been recognized in
longer term contexts as a result of drift and genetic bottlenecks.
Among the requirements for the establishment of intellectual
property over crop varieties, such as underUPOVor patent law, is
genetic uniformity

National Research Council
(1972); FAO (1998)

Crop genetic
vulnerability

The susceptibility of a crop or
crop variety to biotic or abiotic
stresses as a result of genetic
uniformity, creating the
potential for widespread crop
failure

Although susceptibility of crops was recognized previously, the
term may have been coined in the 1970s to explain losses in the
USAduring the SouthernCorn Leaf Blight epidemic of 1970–1971

Meadows et al. (1972);National
Research Council (1972);
Harlan (1975); US Senate
(1980); Brown (1983); Duvick
(1984); FAO (1998); Brown &
Hodgkin (2015)

Crop landrace A crop variety or population
managed by farmers through
cultivation, selection and
diffusion, which is typically
adapted to a local area and to
traditional farming systems,
has a recognizable identity and
geographic origin, and is often
genetically heterogeneous

Different definitions have been proposed since the early 20th

century. Some specify autochthonous (native) vs allochthonous
(relatively recently introduced) landrace types, or primary (locally
evolved) vs secondary (originating as a modern cultivar but now
maintained through farmer selection) types. Some definitions
assert that landraces are typically resilient to abiotic and biotic
stress and therefore display yield stability under low input systems;
others have emphasized that these farmer varieties have strong
cultural associations including unique local uses. Some have
differentiated between landraces as populations with limited
intentional selection by farmers, and folk varieties as populations
with intentional selection. Landraces constantly change over time
through local practices of cultivation, selection, breeding and
diffusion

Hawkes (1983); Harlan (1992);
Brush (1995); Zeven (1998);
Negri (2003); Camacho Villa
et al. (2005); Berg (2009)
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this diversity to agricultural modernization. Rather, crop and other
forms of agricultural diversity were increasingly understood to be
important for ecological processes, including adaptive capacity and
evolutionary potential, as well as for agroecosystem resilience,
ultimately affecting farmers’ livelihoods and self-determination
(Mijatovi�c et al., 2013; Fenzi & Bonneuil, 2016; Sirami et al.,
2019). Losses of associated cultural diversity were also recognized,
including indigenous languages and traditional agricultural knowl-
edge (Benz et al., 2000). Support for in situ/on-farm conservation
began to be explored (Brush, 1991;Wood& Lenne, 1997; Bellon,
2004), though some doubted its efficacy (Frankel & Soule, 1981;
Zeven, 1996; Peres, 2016).

In the 1990s, concern about biodiversity in all its forms became a
global priority through the Convention on Biological Diversity
(CBD), which mandated conservation, sustainable use, and fair
and equitable sharing of the benefits arising from use (CBD, 1992).
National sovereignty over biodiversity and benefit sharing were a
response to disparities in genetic resource distribution and use, as
well as concern over the increasing potential for privatization of
these resources, for example via the International Union for the
Protection of New Varieties of Plants (UPOV), patent law and
trade agreements (Jefferson et al., 2015; Smith et al., 2016). After
the CBD came into force, earlier international agreements on the
conservation of crop diversity (e.g. FAO, 1983) were updated to fit
within this larger biodiversity framework, providing new avenues
for international collaboration through the International Treaty on
Plant Genetic Resources for Food and Agriculture (ITPGRFA)
(FAO, 2002) and the Global Crop Diversity Trust (Esquinas-
Alc�azar, 2005).

In recent decades, the CBD, ITPGRFA and even the United
Nations Sustainable Development Goals have set specific targets
for the conservation of crop diversity (CBD, 2002, 2010; FAO,
2002; United Nations, 2015). After over a century of alarm
regarding its loss, and more than 50 yr of concerted efforts toward
its conservation, safeguarding crop diversity has become well
integrated in the major international agreements on biodiversity

and human development, which highlight the importance of both
ex situ and in situ conservation. Current negotiations are projected
to renew these conservation targets, which were not met by the
previous 2020 deadline (D�ıaz et al., 2020).

There are now c. 1750 genebanks worldwide, maintaining over
seven million samples, with botanic gardens, universities, non-
profits, community seedbanks and local conservation networks
further contributing to safeguarding crop diversity ex situ (FAO,
2010; Miller et al., 2015; Vernooy et al., 2017). Safety duplication
of some of this diversity is accomplished among genebanks and at
global backup repositories (Westengen et al., 2013). Protected
areas offer habitat conservation for some crop wild relatives
(Khoury et al., 2019a) and, to a much more limited degree,
landraces, although both are very rarely prioritized in management
plans (Khoury et al., 2020). Various initiatives promote in situ/on-
farm crop diversity conservation (e.g. Stenner et al., 2016;
AGUAPAN, 2021; Global Environmental Facility, 2021).

Despite these remarkable efforts to prioritize and conserve
crop diversity, the magnitude, trajectory, drivers and especially
the significance of its loss remain insufficiently understood. This
may in part be an inadvertent consequence of the perceived
urgency of the threat, which was posited – before the global focus
on climate change – as ‘perhaps the biggest single environmental
catastrophe in human history’ (Fowler & Mooney, 1991). This
urgency understandably led to an emphasis on action rather than
detailed documentation and theoretical analysis (Brush, 1999;
Sackville Hamilton, 1999) and continues to provide impetus for
interventions. Global climate change has only increased this
urgency (Dyer et al., 2015), as crop diversity is both threatened
by it and also a critical resource for mitigation, resilience and
adaptation (Burke et al., 2009; Dempewolf et al., 2014; Pilling
et al., 2020).

However, lack of information on genetic erosion detracts from
the effectiveness of conservation efforts, including the ability to take
full stock of what is presently safeguarded, to identify what remains
to be protected and to use this information to halt further loss.

Table 1 (Continued)

Term
Definition as applied in this
review Notes Key references

Crop wild relative A wild plant taxon with a
relatively close phylogenetic
relationship to a crop

Cropwild relatives are typically assigned to gene pools in relation to
the crop, based on the degree of crossability, evolutionary lineage
and other factors. For most crops, wild relatives are typically
considered to include the congeneric taxa, although some crops
havewild relatives frommultiple genera (e.g.wheat).Others exist
in such largegenera thatonly a subsetof taxawithin thegenus (i.e.
a section or clade) are considered to bewild relatives (e.g. crops in
the genus Solanum)

Harlan & de Wet (1971);
Maxted et al. (2006);
Casta~neda-�Alvarez et al.
(2016);Miller & Khoury (2018)

Modern crop
cultivar

A crop variety bred by plant
scientists, which is typically
genetically homogeneous and
which displays high yield
potential under optimal
conditions

This term is synonymouswith ‘improved cultivars/varieties’, ‘high-
yielding varieties’, ‘scientifically bred varieties’, ‘elite varieties’ and
‘advanced cultivars’, and is typically associated with Green
Revolution technologies, although techniques pre-date the
spread of fertilizer-responsive dwarf cereal varieties

Zeven (1998); van de Wouw
et al. (2009, 2010)

Overview of key terms relevant to this review of crop genetic erosion. Definitions provided are our own, adapted from and supplementary to pertinent
literature.
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In this review, we outline the varied definitions, measurements,
scales and sources of information on crop genetic erosion. We
provide a synthesis of published evidence regarding changes in
diversity of crop landraces on farms, modern crop cultivars in
agriculture, crop wild relatives in their natural habitats and crop

genetic resources held in ex situ conservation repositories. We then
discuss steps needed to further advance knowledge around the
agricultural and societal significance, as well as conservation
implications, of crop genetic erosion. Finally, we propose actions to
mitigate, stem and reverse further losses of crop diversity.

Fig. 1 The urgency of crop genetic erosion.
This five-part series from 1971 on ‘Genetic
Conservation’, depicted in the University of
Sydneyproject ‘Frontiersof Science’, originally
ran as a weekly pull in newspapers, with one
strip for eachweekday. The stripswere initially
published in the Sydney Morning Herald and
syndicated to other Australian newspapers;
they were also available throughout the USA
and Canada, and internationally through over
600 newspapers. From the perspective of the
present day, some languageused andnuances
of the science may be problematic, but the
urgent need to conserve diversity is timeless.
From the Rare Books and Special Collections,
the University of Sydney Library (Butler et al.,
1971).
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II. Defining and measuring crop genetic erosion

1. Expanding definitions and conceptualizations of crop
genetic erosion

The term ‘genetic erosion’ (Table 1) is commonly attributed to
crop diversity conservation pioneers Erna Bennett and Otto
Frankel (Bennett, 1964, 1968; Frankel & Bennett, 1970), who
chose it as a metaphorical parallel to soil erosion, a widely
recognized environmental challenge (Fenzi & Bonneuil, 2016).
Early conceptualizations of genetic erosion focused on the
disappearance of landraces from the geographic regions of crop
origins, often specifying that the losses were due to replacement of
these locally adapted materials with modern cultivars (Frankel,
1970; Harlan, 1972;Wilkes, 1977). The rates and scales of the loss
of landraces during this period led some experts to use more dire
phrases, referring to ‘genetic wipeout’ (Harlan, 1972, 1975) and
the need to ‘freeze’ the genetic landscape (Iltis, 1974).

These early assertions were grounded in direct and anecdotal
field observations, as well as information on the diffusion of
modern cultivars in particular regions, not on systematic efforts to
analyze the structure and dynamics of landrace populations across
varied ecogeographic and socioeconomic conditions (Brush, 2004;
Fenzi&Bonneuil, 2016). They appear to have been based on a view

of crop landraces as fairly stable if not unchanging, drawn from
perceptions of traditional farmers as similarly unchanging or
timeless, in contrast to European cultures (Fig. 1) (Frankel, 1970;
Frankel & Bennett, 1970; Harlan, 1975). These perspectives
parallel equilibrial concepts in ecology (e.g. the ‘climax’ state in
ecological succession and the Gaussian framework of competitive
exclusion), although these parallels were not explicitly drawn at the
time.

As more systematic approaches to researching genetic erosion in
traditional agricultural landscapes have been developed, complex
patterns of loss, maintenance and increase of diversity have been
revealed. In response, attempts have been made to better under-
stand this dynamism (Brush, 1991; van Heerwaarden et al., 2010).
Priority has been placed on differentiating permanent or marked
loss vs normal variation over time (Brush, 1999; Guarino, 1999;
Brown, 2008) and on documenting functionally relevant change,
such as fitness, long-term viability and capacity to adapt to dynamic
environmental conditions (Eticha et al., 2010). Proximate anthro-
pogenic and environmental drivers of change have been aligned
with concepts from evolution and ecology, including mutation,
drift, gene flow, migration and selection (Fig. 2). Theoretical
frameworks, including island biogeography, isolation by distance,
niche theory and metapopulation models, have provided further
ecological insights, recognizing that agroecosystems undergo

Box 1 Just how much crop diversity has disappeared worldwide? The mysterious origins of the 75% narrative

Among the most common genetic erosion narratives, often repeated since the 1990s, is that three-quarters of crop diversity disappeared in the 20th

century. The estimate is attributed to the FAO, invariablywithout original citation. The statement also commonly specifies that the 75% loss stems from
the replacement of crop landraces with modern varieties (e.g. FAO, 2004).

This ubiquitous statisticmayhave its roots in effortsby theFAO’sCommissiononGeneticResources for FoodandAgriculture, associated international
organizations such as the IBPGR, and nongovernmental organizations such as the Rural Advancement Foundation International (RAFI) to synthesize
disparate evidence and anecdotes of loss from around theworld, possibly in contribution to early CBD negotiations and processes (J. Esquinas-Alc�azar,
pers. comm.;P.Mooney,pers. comm.). Theearliest publishedappearanceof this quote thatwehave found is fromanFAOdocumentprepared for Earth
Day 1993,written byHope Shand of RAFI, twice stating that ‘Since the beginning of this century about 75%of the genetic diversity among agricultural
crops has been lost’ (FAO, 1993).

It is alsopossible that the statistic has amore singularorigin. In twosectionsof Fowler andMooney’s (alsoofRAFI) bookShattering: Food,Politics, and
the Loss of Genetic Diversity (1991), while discussing the ongoing replacement of landraceswithmodern cultivars, the authors communicated an FAO
expert’s concerns about the narrowing list of vegetable crop varieties permitted to be grown in Europe and the consequences for the region’s landrace
diversity: ‘As the mid-1970s were reached, three-quarters of Europe’s traditional vegetable seed stood on the verge of extinction’ (p. xii), and ‘Many
varieties – indeedup to three-quarters of all those presently grown in Europe, according to Erna Bennett –will becomeextinctwithin ten years!’ (pp. 85–
86).

Erna Bennettwas a pioneer in cropdiversity conservationwho coined the terms ‘plant genetic resources’, ‘genetic conservation’ and ‘genetic erosion’
(Pistorius, 1997; Hanelt et al., 2012). She worked at the FAO from 1967 until 1982. During a phone interview with Fowler and Mooney in 1978, she
voiced her concerns regarding reductions in European varieties (M. C. Fowler, pers. comm.). She later served on the Board of RAFI, and eventually
resigned from the FAO over her opposition to the increasing influence of corporate agriculture in the organization.

Whether the 75% estimate is an extrapolation of many sources of information or stems from this single source, the questions of which other lines of
evidence potentially contributed, which stakeholders were involved and how the jump from specific findings to a global estimationwasmade remain a
mystery. The result – a simple, single number for the loss of crop diversity at the global scale, attributed to an authoritative international organization –
has clearly had a big impact on the field.

A secondmessageveryoftenaccompanying statementsabout thedeclineof infraspecific cropdiversity is that very fewcropspresently feed theworld.
This is also attributed to FAO, and is equally conceptually challenging due to its reliance on relatively limited data regarding human diets and nutrition
worldwide (Prescott-Allen andPrescott-Allen, 1990), aswell as a lack of perspective on howcrop species diversity has changedover time (Khoury et al.,
2014).While thismessage is conveyedwith a varietyof numbers, among themost common is that a very limitednumberof crops (i.e. aroundnine to12)
provide three quartersof theworld’s food (e.g. FAO, 1998; 2004). Given the ubiquity of these 75%narratives in the literature and in the news, it is clear
that theyhaveproven tobepowerful communication tools to raise awarenessabout cropdiversity and thepotential vulnerability of food systems, even if
their accuracy in quantifying change in crop diversity over time is questionable.
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similar ecoevolutionary processes (Brush, 1999; Schoen & Brown,
2001; van Heerwaarden et al., 2010; Tomich et al., 2011). These
innovations have made it possible to entertain more effective
pathways for on-farm conservation, emphasizing conditions and
processes that foster diversity (Brush, 2004; Bellon et al., 2017).

Genetic erosion studies have expanded: from their original
geographic focus on regions of crop origins to locations all over the
world (e.g. Portis et al., 2004; Priolli et al., 2004;Reif et al., 2005a);
from landraces to also include crop wild relatives and modern
cultivars (e.g. Kiambi et al., 2005; Reif et al., 2005a; van de Wouw

et al., 2010); and from farms to also include wild spaces, seed
systems and conservation repositories (e.g. Stehno et al., 1999;
Parzies et al., 2000;Negri&Tiranti, 2010). Associated research has
further widened to cover farming landscapes, traditional knowl-
edge and culture, and supporting ecosystem services (Sackville
Hamilton, 1999; Gepts, 2006). Many other anthropogenic and
environmental drivers of crop diversity loss, beyond replacement of
landraces with modern cultivars, have been investigated (Fig. 2).
Genetic erosion as a term and as a concern has also expanded
beyond agriculture to include a wide range of studies on wild plants

Remote drivers

Economic, agricultural, technological, climatic, and political change

Proximate drivers

• Introduction of exotic diversity (species, variety, allele A, FC, L)
• Environmental change (species, variety, allele A, FC, L)
• Habitat destruction (species, variety, allelle FC, L)
• Demographic change (species, variety, allele A, FC, L)
• Market change (species, variety, or allele A, FV, L)
• Introgression (allele A, FC, L)
• Replacement by modern varieties, other landraces, or other
  crops (species, variety L)

• Ceasing to grow a crop (species, variety L)
• Plant breeding (variety, allele A, FC, L)
• Seed exchange (species, variety, allele A, FC)
• Creolization (allele A, FC, L)
• Farmer selection (allele FC, L)
• Genebank deficiencies (variety, allele A, FC, L)
• Agronomic change (species, variety, allele A, FC, L)
• Land abandonment (species, variety, allele L)
• War and civil strife (species, variety, allele L)

Evolutionary driver/force

Mutation Migration/gene flow Drift Selection

Outcome

Addition (A) of
allele, trait, population,

variety, species

Frequency change (FC) of
allele, trait, population,

variety, species

Loss (L) of
allele, trait, population,

variety, species

CRCR

CRCR

CRCR

CRCR CRCR

CRCR
CRCR

CRCR

CRCW

CRCW

CWCW

CWCW

Fig. 2 Evolutionary drivers of change in crop diversity. Conceptual diagram with examples of how crop diversity outcomes, including genetic erosion, are
mediatedvia evolutionary forces,drivenbyproximate forces, originating in larger changes in societyandnature.Note that examplesarenot comprehensiveand
provide typical outcomes. A, addition; FC, frequency change; L, loss.
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and animals (e.g. Van Treuren et al., 1991; Rogers, 2004; Rubidge
et al., 2012; D�ıez-del-Molino et al., 2018; Leigh et al., 2019).

The concept of genetic erosion is now widely known in
biodiversity conservation – almost 400 articles have been published
with the term in the title and over 23 000 with the phrase in the text
(Google Scholar, 2020). This has been enabled by the expanding
scope and accompanying variety of interpretations: we found c. 50
different definitions/descriptions just in the crop diversity literature
(Table S1). These mainly vary by improvement type (landraces
only, or also modern cultivars and/or wild relatives), geographic
scope (within regions of crop domestication only, or also
elsewhere), setting (in situ only, or also including ex situ) and
degree to which drivers of loss are specified.

2. Diverse measures, scales and sources of information
about crop genetic erosion

As genetic erosion research has evolved, three main measurement
targets have emerged: absolute losses (e.g. Colunga-Garc�ıaMar�ın
et al., 1996; Laghetti et al., 2009; Megersa, 2014), changes in
richness (e.g. Hammer & Laghetti, 2005; Nabhan, 2007; Dyer
et al., 2014), and changes in abundances, frequencies or evenness
(e.g. Khlestkina et al., 2004). These interrelatedmeasurementsmay
also be combined, reflectingmetrics commonly used in ecology and
population genetics such as Shannon and Simpson indices
(Bonneuil et al., 2012; Brown & Hodgkin, 2015). Quantification
may be direct, or through proxies such as numbers of farmers or
villages (e.g. Teklu & Hammer, 2006; McLean-Rodr�ıguez et al.,
2019; Olodo et al., 2020).

While researchers have identified multiple scales at which crop
diversity and its loss may be understood (van deWouw et al., 2009;
vanHeerwaarden et al., 2010), studies have generally focused either
on broader levels, namely change among named varieties, races and
species (e.g.Hammer et al., 1996; Tsegaye&Berg, 2007; Perales&
Golicher, 2014; Box 2) or on genetic variation, that is in alleles,
genes, gene complexes or traits (e.g. Reif et al., 2005b; Malysheva-
Otto et al., 2007; Thormann et al., 2017a,b).

Genetic research has employed a suite of molecular marker
techniques and population genetic analyses, including estimates for
diversity, differentiation, demographic history and patterns of
adaptive divergence (Jordan et al., 1998; Fu&Somers, 2011; Fu&
Dong, 2015). Indirect approaches to measure change in genetic
diversity have also been employed, including coefficients of
parentage and related metrics used to compare pedigrees (e.g.
Bowman et al., 2003;Martynov et al., 2005, 2006).Within-variety
diversity research has also included investigations of changes
in phenotypic variation, often focusing on agronomic traits (e.g.
Nersting et al., 2006; vanHeerwaarden et al., 2009; Schouten et al.,
2019).

These crop diversity analyses have been conducted at a wide
range of geographic scales, from local (e.g. farm, population or
genebank accession), to community and agroecological landscape,
to country, region and globe. The time frames for assessing change
also vary widely, from short intervals to decades, and, more
recently, aided by ancient DNA methods and for some clonally
propagated crops, centuries or millennia (e.g. Gross et al., 2014;

Mascher et al., 2016; Smith et al., 2019). Intermediate time frame
studies often compile and report diversity change at standardized
intervals, such as the decade (e.g. Donini et al., 2000; Duvick et al.,
2004; Fu & Dong, 2015).

As with other parameters, the sources of information used to
document change in crop diversity also vary widely, and may be
used in combination. Direct field observations provided the first
lines of evidence for genetic erosion, and continue to be employed
(e.g. Hammer & Laghetti, 2005; Nabhan, 2007). Local knowl-
edge, gathered through interviews with farmers and their families,
community meetings, and surveys, have been widely used to assay
change and document farmers’ perspectives (e.g. Bayush & Berg,
2007;Kombo et al., 2012;McLean-Rodr�ıguez et al., 2019). Lists of
cultivar names, seed inventories, catalogues, agricultural censuses,
pedigrees and photographs have provided historical baselines
against which to compare current diversity (Box 2). Biological
specimens maintained ex situ or collected from the field have

Box 2 Change over time in crop diversity: what’s in a name?

An oft-cited study based on varietal names compared the vegetable
and field crop varieties listed in US seed catalogues in 1903 to the
inventory of the national genebank in 1983 (Fowler and Mooney,
1991). The results indicated that only 3% of the 1903 varieties were
still available in 1983. While the study accounted for synonyms, a
reanalysis twodecades latermoved thenumberupward to7.4%,due
both to adjustments in synonymy and to the correction of a
mathematical error (Heald & Chapman, 2009). The overall result
held thatmore than 90%of historical varietieswere no longer readily
available.

One of the major challenges in investigating changes in crop
diversity through such comparisons is considering not only the
diversity that has been lost, but also what has replaced it. Heald &
Chapman (2009) attempted this by also quantifying the total
number of varieties presently available in US seed catalogues in
2004. Finding only a 2% decline in varietal richness compared to
1903, they concluded that no significant loss of US varietal diversity
had transpired: ‘If the meaning of diversity is linked to the survival
of ancient varieties, then the lessons of the twentieth century are
grim. If it refers instead to the multiplicity of present choices
available to breeders, then the story is more hopeful.’ (Heald &
Chapman, 2009, p. 4).

A further challenge in name-based studies is that varietal names –
even accounting for synonyms – may be poor proxies for genetic
diversity (e.g. Busso et al., 2000; Louette & Smale, 2000; Hoban &
Romero-Severson, 2012; but see Quiros et al., 1990; Mart�ınez-
Castillo et al., 2008). Since biologicalmaterials fromhistorical lists are
rarely available in full for study, it is usually impossible to robustly
compare these at the genetic level (Ford-Lloyd et al., 2008; although
see Le Clerc et al., 2006; van de Wouw et al., 2013). Furthermore,
overall genetic diversity measures are not necessarily equivalent to
the functional diversity of relevance to farmers’ ormarket desires and
needs, which are themselves constantly evolving (Brown, 1983; Fu&
Somers, 2011; Vigouroux et al., 2011). Moreover, significant losses
in diversity can be difficult to distinguish from ‘normal’ levels of
change in response to farmer, market or environmental drivers
(Mercer & Perales, 2010). Finally, such studies rarely account for
spatial change, such as in cultivated areas of different cropvarieties or
to weigh both richness and evenness.
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providedmaterials for genotypic and phenotypic comparisons (e.g.
Del Rio et al., 1997; Diederichsen et al., 2013;McLean-Rodr�ıguez
et al., 2019). Remote sensing data have also been used, for example
to predict changes in crop diversity impacted by climate change
(e.g. Jarvis et al., 2008b; Rhon�e et al., 2020).

III. Evidence for, and drivers of, changes in crop
diversity over time

Here we present a synthesis of evidence regarding diversity changes
in crop landraces on farms,modern crop cultivars in agriculture and
crop wild relatives in their natural habitats (below), as well as crop
genetic resources held in ex situ conservation repositories (in Notes
S1). To review the literature on changes in crop diversity over time,
we compiled studies investigating changes, as well as the reasons for
such changes, across all geographies, scales, time periods, crops and
their wild relatives, and methods, bringing together evidence on
crop genetic erosion in the widest sense. Literature review methods
and limitations are provided in Notes S2, with key attributes for
288 pertinent publications, including the 232 primary literature
sources, given in Table S2, and their references in Appendix A1.

1. Changes in the diversity of crop landraces on farms

The original focus of genetic erosion concern – landraces – remains
the most widely researched, with 139 articles published from 1939
to 2021 (Table 2).These provide information on changesmainly in
annual cereal crops, namelymaize, wheat, rice, barley and sorghum,
with relatively broad geographic coverage globally and particular
focus on East Africa, Mesoamerica, West Africa, South America,
South Asia and Southwest Europe. More than three-quarters of
these studies focus on the geographic origins and primary regions of
diversity of crops. They predominantly assess diversity among
landraces, but also include within-landrace and species-level
diversity. Regarding scale, they mainly analyze regions within
countries, as well as the country level. They employ a mixture of
methods, with farmer and community interviews and surveys and
field visits being the most common, but also including genetic,
nomenclatural and phenotypic comparative analyses. Most pub-
lications assessed change fromaround the 1920s–2000s as a starting
point to the 1990s–2010s as the end/current period, with amedian
time frame of 28 yr.

This literature documents widespread losses of landrace diversity
over the past century, continuing to the present. Over 96% of
studies found change in diversity over time, withmore than 86%of
the total documenting evidence of decline. These include the
complete disappearance of specific landraces (e.g. Colunga-Garc�ıa
Mar�ın et al., 1996; Laghetti et al., 2009; Eticha et al., 2010) and a
few crop species (Hammer & Khoshbakht, 2005), declines in
richness (Box 2) (e.g. Hammer et al., 1996; Nabhan, 2007; Dyer
et al., 2014), and losses of within-landrace variation (e.g. Portis
et al., 2004; Trifonova et al., 2021). Declines in the harvested area
(e.g. Sharaf Uddin et al., 2005; Rice, 2007; Gomes Viana et al.,
2020), or number of farmers/families (Teklu & Hammer, 2006;
McLean-Rodr�ıguez et al., 2019; Mulualem et al., 2020) or villages
(Olodo et al., 2020) cultivating specific landraces within a given

area were also documented. The few studies assessing change in
traditional knowledge related to crop diversity generally also
indicated loss (Brush & Stabinsky, 1996; Benz et al., 2000; Brush,
2004; Keller et al., 2005).

As for reasons for landrace diversity loss, the most reported
driver, both within and outside of the geographic origins of crops,
was replacement with modern cultivars. In some regions and for
some crops, this transition appears to be largely complete. For
example, Brush (2004) documented the wholesale replacement of
maize landraces in theUS corn belt largely between 1925 and 1950.
By contrast, maize landraces inMesoamerica continue to be widely
cultivated, with ongoing diversity loss but also maintenance and
diversification (Fig. 3).

A wide variety of other drivers of loss were also documented,
including agronomic, demographic, land use, environmental and
market change, as well as development processes and seed system
deficiencies (Tables 2, S3).The replacement of landraceswith other
crop species was also noted, for example sorghum with maize in
Yemen (Varisco, 1985) and traditional with exotic vegetables in
Tanzania (Keller et al., 2005). Climate change has been reported to
be a driver of loss of landrace diversity in recent decades and is
predicted to lead to further declines (e.g. Mercer & Perales, 2010;
Ureta et al., 2012; Rhon�e et al., 2020; Labeyrie et al., 2021).

Many of the drivers specifically highlighted in the literature are
interrelated facets of agricultural and economic development,
manifested through the extension and expansion of formal seed
systems, globalization of markets and increasing availability of
agricultural technologies, with national and international policies
and trade agreements enabling all the above (Robinson, 2018).
Studies focused on areas increasingly connected to outside regions,
allowing the faster dispersion of modern cultivars, agricultural
chemicals and other inputs, as well as easier movement of produce
tomarket, have documented substantial losses in landraces and also
reductions in differences among those that persist, that is increasing
genetic homogeneity across remaining landraces (Fig. 4) (e.g. Rice
et al., 2006; Thormann et al., 2017a; Rojas-Barrera et al., 2019;
Olodo et al., 2020).

The literature demonstrates the importance of particular
environmental and social conditions in driving landrace diversity
change. Farmlands with characteristics amenable to agronomic
practices associated with modern cultivars, for example flat,
irrigated plots, have shown more severe declines in landrace
diversity than rainfed or marginal areas (Chambers et al., 2007).
Major changes in labor availability and other demographic shifts
have led to losses for landraces with intensive labor requirements
(Zimmerer, 1991, 1992; Negri, 2003). Demand and market
changes have resulted in reductions in the cultivation areas of
specific landraces (Rice, 2007; Gomes Viana et al., 2020). Periods
of instability, whether civil strife (Sperling, 2001) or environmental
change (Shewayrga et al., 2008), have led to rapid losses, although
not in all cases (van Etten, 2006). These are not solely recent
phenomena; Clement (1999) linked loss of traditional crop
diversity with Indigenous population decline following the arrival
of Europeans in the Americas after 1492.

While the body of literature clearly documents extensive declines
in landrace diversity, it also provides important context and caveats
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(described below,with gaps in existing knowledge further discussed
in Steps needed to advance knowledge about crop genetic erosion
section).

First, interchange and turnover of landraces have been demon-
strated to be widespread and often relatively continuous charac-
teristics of traditional agroecosystems for many crops (e.g. Louette
et al., 1997; Perales et al., 2003; Mart�ınez-Castillo et al., 2012;
Rojas-Barrera et al., 2019), refuting early notions that landrace
diversity is static and unchanging.

Second, while linear diversity declines when comparing wild
species to landraces to modern cultivars have been documented,
such as in sunflower (Tang & Knapp, 2003) and soybean (Hyten
et al., 2006), loss in overall genetic/genomic diversity has been
shown to be less drastic or more gradual than expected in some
crops, namely woody perennials including apple and grape (Miller
& Gross, 2011; Gross et al., 2014), common bean (Trucchi et al.,
2021), carrots (Iorizzo et al., 2013) and sorghum (Mascher et al.,
2016; Smith et al., 2019). More generally, regarding moderniza-
tion diversity bottlenecks, crops lacking extensive formal scientific
breeding and extension programs, and thus still primarily based on
farmer-managed diversity, are less exposed to replacement by

modern cultivars of the same species and less affected by associated
reductions in landrace diversity.

Third, a considerable body of evidence for change or loss is based
on landrace names. These are a way of describing crop diversity that
farmers use and are thus relatively easily recorded through
interviews and surveys (e.g. Teshome et al., 2007; Bezanc�on et al.,
2008; Kombo et al., 2012) and through inventories, catalogues and
censuses (e.g. Fowler & Mooney, 1991; Hammer & Khoshbakht,
2005; Bayush & Berg, 2007). However, nomenclatural inconsis-
tency, including the use of different names for genetically similar
landraces (synonymy) and single names for genetically distinct
materials (homonymy), complicates this approach (Jarvis et al.,
2008a; van de Wouw et al., 2011; Volk & Henk, 2016). Further,
the power of name-based genetic erosion studies is constrained by
limited accounting for the diversity that replaced the landraces,
challenges in distinguishing important or permanent vs minor or
temporary change, limited documentation of accompanying
spatial change, and poor correlation between name diversity and
genetic diversity (Box 2).

Fourth, the disappearance of landraces, while potentially
representing the extinction of unique genotypes and gene

(a) (b)
In situEx situ
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km

0 1 2 3 4 5 6

7 8 9 10 11 12
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Decrease in richness

Number of maize races

Fig. 3 Changes in maize landrace diversity in Mexico. Mexican farmers currently cultivate c. 8 million hectares of maize, 75%with farmer-saved seed (Bellon
et al., 2018). While most farmer-saved varieties are landraces, some are advanced generations of modern cultivars or mixed (creole) varieties (Bellon &
Risopoulos, 2001). Modern cultivars are largely absent in the highlands (> c. 2000m asl), common in the lowlands (< c.1400m asl) and rare at midelevations
(Perales, 2016). (a) Perales & Golicher (2014) used genebank samples collected in c. 10 yr periods around 1950, 1975 and 2005 to examine changes in maize
racial composition and richness inMexico.All raceswere present at similar frequencies across timeperiods. Five of the 47 raceswere abundant and20were rare
inall three samplingperiods; rarenessof someof thesehadalreadybeennoted in1950 (Wellhausenet al., 1952).Distributionmodels showed richnessgenerally
increased over time, although possibly due to new racial designations; just three of 11 maize biogeographic regions showed a decline in richness over time
(shown is maize racial richness based on distributionmodels for germplasm collected between 1975 and 2010 and relative change inmodeled richness (%) by
biogeographic region based on richness for < 1980 models, with blue arrows indicating an increase and green a decrease in richness, and size of arrows
indicating themagnitude of change (maximums are+48%and�40%). By contrast, a case study from the Yucatan (Fenzi et al., 2015) confirmed an increasing
dominance of longer season, higher yielding race Tuxpe~no from 1999 to 2011, with (formerly common races) Dzit Bacal and Nal Tel maintained at low
frequencies. At the landrace level, economic surveys by Dyer et al. (2014) have documented a decreasing landrace richness per household across Mexico,
declining from 1.43 to 1.22 between 2002 and 2007. (b) At higher elevations, McLean-Rodr�ıguez et al. (2019, 2021) examined maize landrace diversity in
Morelos over 50 yr. Families still had the same seed lot for 15%of 93 accessions collected in 1966 and another 6%had adifferent seed lot of the same landrace.
At themunicipality level, racial types remainedpresent in 65%of cases.When comparing themolecular genetic variation of historical and current samples from
families still growing the same seed lot, they found diversity based on single nucleotide polymorphisms (SNPs) was similar – current samples had 3.1% fewer
SNPs and lower pairwise genetic distances overall than historical samples, but similar heterozygosity; the samplingperiods did not differentiate using clustering.
Several loci appeared to be under farmer selection in theAncho race (shown is a comparison of the historical (ex situ) collection and a current (in situ) collection
from the samedonor family inMorelos; photographs courtesy ofMcLean-Rodr�ıguez), demonstrating ongoing evolutionover the last 50 yr.WideAnchograins
have greater commercial value for use in a specialty dish (Perales et al., 2003). The abundant literature onMexicanmaize diversity shows complex trends, with
farmer-saved seed exchanged intensely among households, communities and regions. Maize races grown in the 1940s remain extant, albeit with signs of
decline in some locations, while some landraces seem to be evolving into new forms. This adaptive process could become even more essential under climate
change and the declining economic importance of agriculture. However, the relationship between changes in landrace use and overall genetic diversity in this
outcrossing species is not well understood and remains a research priority.
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Fig. 4 Changes in cultivated andwild barley diversity in Jordan. Experimental design and results for evaluating temporal changes in genotypic and phenotypic
diversity (Thormann et al., 2017a,b). Samples from a plant collecting mission in 1981 were stored as original seed at the Nordic Genetic Resource Center
(NORDGEN) and used as baseline samples. Location noteswere used to conduct a second collecting effort at the same sites in 2012,with the seed deposited at
the National Center for Agricultural Research and Extension (NCARE) in Jordan and at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in
Germany. Seeds from both collecting periods were grown in a randomized block design at the IPK in 2013 and individual plants were evaluated for 16
phenotypic traits. Phenotypes were compared as a multivariate composite of the 16 trait values using the first principal component. ANOVA was applied to
theseprincipal components toassess changesdue to the collectionyear. InwildHordeumspontaneumpopulations, therewasno significantdifferencebetween
collecting years. Phenotypic differences were significant for barley landraces. Tissue samples from individual plants were used as a source of DNA for
microsatellite (simple sequence repeat (SSR)) genotyping at 38 loci. Genotypic changes, measured as standardized differentiation (Wright’s FST and Jost’sD),
showed significant changes in genetic structure for both wild and cultivated barley, including significant reductions in differentiation among populations,
reflecting an increase in genetic homogeneity across the landscape.
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complexes, does not necessarily imply an overall decline in genetic
diversity.Over a quarter of the studies documenting loss of landrace
diversity also reported maintenance or even appearance of new
diversity (e.g. Rice et al., 2006; Bitocchi et al., 2009; Orozco-
Ram�ırez & Astier, 2017). Steele et al. (2009) found that replace-
ment of rice landraces by modern cultivars in Nepal could increase
overall genetic diversity if the adoption of modern varieties was
limited to 65% of the study area. Vigouroux et al. (2011) found no
major change in overall genetic diversity in pearl millet landraces in
villages in Niger over 25 yr, despite significant shifts in adaptive
morphological traits due to recurrent drought.

Finally, adoption of modern cultivars may not directly equate
with landrace loss. Farmers commonly maintain landraces even as
they incorporate modern cultivars into their systems (Brush et al.,
1981), and also interbreed the two to produce new varieties
carrying useful traits from both parental backgrounds, a practice
referred to as ‘creolization’ in Latin America (e.g. Bellon &
Risopoulos, 2001; Perales et al., 2003; Rojas-Barrera et al., 2019).

Indeed, the continued generation of research publications on
landraces to the present day demonstrates a level of persistence of
traditional crop diversity unforeseen by the leading authorities
predicting genetic wipeout in the early decades of the field (Fig. 1).
This persistence can be traced in large part to the distinct values
provided by landraces for local productivity, production stability
and resilience as well as for dietary, specialized or high-value
markets, and other cultural purposes in particular contexts and
regions (Zimmerer, 1992; Brush & Meng, 1998; Negri, 2003;
Perales et al., 2003; Nabhan, 2007; Rice, 2007; Katwal et al., 2015;
Bellon et al., 2017; Wang et al., 2018).

Landraces continue to provide a viablemanner by which farmers
can optimize long-term production in heterogeneous andmarginal
environments, particularly in the absence of moderating technolo-
gies such as irrigation and soil amendments (Bellon et al., 2006). In
highlands, for example, landraces are more likely to be maintained
in comparison to at lower altitudes and valley bottoms (Brush,
2004), in part due to varied soils (Bellon&Taylor, 1993), obstacles
to road building and irrigation (Zimmerer et al., 2017), and a lack
of well-adapted modern cultivars (Mercer & Perales, 2010).
Landraces can also better fit farm labor availability (Bellon et al.,
2017). Diversity among and within landraces thus provides option
value (Brown, 1990) and risk management (Teshome et al., 2007;
Zimmerer, 2010), particularly to small-scale farmers lacking
economic resources, credit opportunities and extension support
(Baker & Jewitt, 2007; Nazli & Smale, 2016).

2. Changes in the diversity of modern crop cultivars in
agriculture

Research into changes in the diversity of modern crop cultivars
understandably began more recently than for landraces, but has
been substantial, with 105 pertinent articles published between
1984 and2021 (Table 2). Aswith landraces, themain crops studied
have been annual cereals, namely wheat, barley, maize, rice and
oats. Geographic focus has been quite uneven, with Europe and
North America, and to a more limited extent South and East Asia,
fairly well studied, while other regions have been poorly covered.

The majority (69.5%) of research has focused on areas outside the
geographic origins of the relevant crop(s). Most of the studies have
been conducted at country, subcountry or regional scales, using
geneticmethods.These have focusedmainly on changes in diversity
within or among varieties, with a few assessing varietal richness
(Stehno et al., 1999; Heald & Chapman, 2012), or changes in
cultivated area (Brennan& Fox, 1998; Aguilar et al., 2015;Martin
et al., 2019). Often drawing on historical and contemporary
materials maintained in genebanks, the literature generally
analyzed cultivar diversity change from around the 1900s–1970s
to the 1990s–2000s, with a median time frame of 59 yr.

This literature documents widespread and complex changes in
modern cultivar diversity. More than two-thirds of the publications
found evidence of decline in diversity over time, mainly as a result of
plantbreeding activities andassociatedwith changes inpublic vsprivate
industry dominance and intellectual property frameworks. Many of
these studies compared themodern cultivars of a crop availablewithin a
geographic area, and also historical landraces from the same region,
generally finding higher diversity in the landraces, with a decline in
variation through the transition tomodern cultivars and across cultivars
over subsequent decades (e.g. Jordan et al., 1998; Roussel et al., 2004;
Mir et al., 2012). The multispecies review by Rauf et al. (2010)
identified the highest rates of genetic erosion amongmodern cultivars,
compared to that among landraces and wild materials.

Almost half of the publications also found increasing diversity
among modern cultivars over recent decades, in some cases
compensating for losses of overall genetic diversity found in
historical varieties (Fig. 5) (e.g. Reif et al., 2005b; Steele et al., 2009;
Schouten et al., 2019). Ameta-analysis of 44 publications on change
in allelic evenness among modern cultivars of eight field crops
released during the 20th century at regional levels found significant
change over decades but no overall decrease in genetic diversity in
cultivars over time (van de Wouw et al., 2010). The researchers
documented a reduction of allelic evenness in the 1960s compared to
previous decades, especially in North America. After the 1960s and
1970s, however, diversity increased, perhaps because of greater access
to genetic resources in genebanks, as well as wider use of crop wild
relatives and other diverse resources in plant breeding.

Many of the publications surveyed reveal complexity in these
trends. Fu (2006), in a review of 23 cultivar diversity publications,
found that genome-wide changes in overall genetic diversity were
not significant over time, but allelic diversity loss at individual
chromosomal segments was substantial. Duvick (1984), in a survey
of plant breeders, reported an assessment that the genetic base of
modern cultivars of major crops was increasing, but was still not
sufficiently diverse. van de Wouw et al. (2013) reported an
increasing number and uniqueness of lettuce cultivars available
from French and Dutch companies after a genetic diversity low in
the 1960s, but also a dramatic decline in the number of breeding
companies. A recent study on rice cultivars in China documented a
diversity peak in the 1990s–2000s – aligning with reviews such as
that of van de Wouw et al. (2010) – but also found significant
decline in the most recent decade (Tang et al., 2021).

Increasing genetic homogeneity among modern cultivars was
also commonly reported (e.g. Cox et al., 1986; Moon et al., 2009;
Gatto et al., 2021). While van de Wouw et al.’s (2010) meta-
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century. While the results have varied by crop and methodological tool, the overall trend has been one of declining diversity, including substantial allelic
reduction at individual loci aswell as genetic shift, particularly forwheat and oat cultivars (Fu&Dong, 2015). This figure demonstrates allelic diversity decline in
75wheat cultivars and across three geneticmethodologies. (b) Global analyses of genetic diversitywithin and amongmodern cultivars have documented both
declines and increases in diversity. A metaanalysis involving 44 publications covering eight field crops, based on allelic evenness (Nei’s D) in regional pools of
cultivars releasedduring the 20th century (van deWouw et al., 2010) revealed declines in diversity especially around the 1960s–1970s, followedby increases in
more recentdecades, resulting inminimaloverall lossover time.This figuredepictsdecadal diversity changeswith results across studiesweightedby sample size,
number of loci and molecular marker system. (c) Analyses targeting changes in important traits are less frequent in the literature than those assessing overall
diversity. Schouten et al. (2019) documented not only increasing genetic diversity over seven decades in registered glasshouse tomato cultivars in the
Netherlands, but also higherproportions of exotic introgressions fromcropwild relatives since the1970s to increase resistance todiseases andpests, particularly
for organic/lowpesticide systems, aswell as further genetic andphenotypicdiversifications tomeet consumerdemand for fruit size, color, shapeandflavor. The
heat map depicts increases in genetic diversity (expected heterozygosity) across the crop’s 12 chromosomes, with blue indicating low diversity and red high
diversity per decade for chromosomal fragments. (d) Changes in the spatial diversity ofmodern cultivars aremuch lesswell researched than changes in pools of
registered or available varieties. A recent analysis of trends in theGreen Revolution expansion of improved cultivars of 11 cereal, pulse, and root/tuber crops in
44 countries in Asia and sub-Saharan Africa from 1970 to 2014 (Gatto et al., 2021) quantified the increasing proportion of total cultivated area dedicated to
modern cultivars, especially in Asia (depicted here; orange depicts landraces, while blue depicts modern cultivars). They also documented the importance of
modern ‘mega-varieties’ in driving spatial homogeneity. (a) Reprinted by permission from Springer International Publishing (Genetic Diversity and Erosion in

Plants) (Genetic erosion under modern plant breeding: case studies in Canadian crop gene pools, Fu Y-B, Dong Y-B, 2015). (b) Reprinted by permission
from Springer Nature (Theoretical and Applied Genetics) (Genetic diversity trends in twentieth century crop cultivars: a meta analysis, van de WouwM,
HintumT, Kik C, Treuren R, Visser B, 2010). (c) Reprinted under CC-BY,© 2019 Schouten, Tikunov, Verkerke, Finkers, Bovy, Bai & Visser. (d) Reprinted under
CC-BY, © 2021 Gatto, de Haan, Laborte, Bonierbale, Labarta & Hareau.
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analysis found no net loss of genetic diversity at regional levels, they
acknowledged that varieties may be more similar globally due to
declining numbers of seed companies breeding varieties for
different markets. Martin et al. (2019) documented greater spatial
homogeneity across subcontinents over time in terms of richness of
major crop commodities, while Aguilar et al. (2015) demonstrated
increasing uniformity in crops cultivatedwithin counties in theUS.
Both these studies illustrate crop specialization based on modern
cultivars and may also point to the dominance of widely adapted
varieties (Gatto et al., 2021).

While significant changes in modern crop cultivars are clearly
documented in the literature, determining the overall impact of
plant breeding on their genetic diversity and, further, on their
genetic vulnerability remains a major challenge (Fu & Dong,
2015).Only a few of the studies targeted genetic diversity of known
functional relevance (Jordan et al., 1998; Fu&Somers, 2011), with
the majority analyzing random genetic markers or overall diversity.
Phenotypic studies of modern cultivars, on the other hand, have
generally focused on agronomically important traits (e.g. Nersting
et al., 2006; Diederichsen et al., 2013; Schouten et al., 2019). The
majority of these ‘functional’ diversity studies found significant
decreases in variation.

Further, with only a few exceptions (Brennan & Fox, 1998;
Bowman et al., 2003; Gross et al., 2014), these studies analyzed
trends in the diversity of modern cultivars that were available,
registered or bred in a given area, not in the extent of their
cultivation (e.g. planted area) or the varietal turnover rate. Research
focused on cultivation patterns following the Green Revolution
transition documented increasing varietal homogeneity within 11
major food crops, particularly in Asia, through the spread of
modern cultivars and especially due to the success of ‘mega varieties’
(Gatto et al., 2021).More evidence of this sort is critically needed to
form a comprehensive understanding of field- and landscape-level
diversity changes in areas planted to modern cultivars, and the
implications of these changes in terms of crop genetic vulnerability.

3. Changes in the diversity of crop wild relatives in their
natural habitats

Research on changes in the diversity of cropwild relative species and
their populations comprises amuchmore limited body of literature
than that on landraces and modern cultivars, with 33 articles
published between 1988 and 2020 (Table 2). These cover the wild
relatives of rice, maize, coffee, barley and a handful of other crops,
with relatively good regional spread, especially in East Africa,
Mesoamerica, East and West Asia, West Africa, and North
America. These studies mainly assessed changes in diversity at the
subcountry scale, although research was also conducted at the
country, regional and global levels. The research analyzed changes
in entire species (e.g. Jarvis et al., 2008b; Legesse, 2019), popula-
tions (e.g. Akimoto et al., 1999; Kiambi et al., 2005) and within-
population diversity (e.g. Nevo et al., 2012; Greene et al., 2014;
Rojas-Barrera et al., 2019). Using field surveys, published list
comparisons, genetic and phenotypic analyses, and predictive
modeling, the analyses examined change from around the 1950s–
1990s to the 2000s–2010s, with a median time frame of 17.5 yr.

This research largely documents severe negative impacts on
many crop wild relative populations around the world over time,
including on crop progenitor species. Across the literature, 81.8%
of the articles found evidence of a decline in diversity, with another
9.1% predicting future genetic erosion. A few studies also noted
genetic diversity increases at specific loci due to greater gene flow
among wild populations (Fig. 4) (Thormann et al., 2017b) or with
associated crops (Akimoto et al., 1999) because of habitat distur-
bance, both leading to greater genetic homogeneity among wild
relative populations.

Documented drivers of losses of crop wild relatives in their
natural habitats included changes in land use, climate, agronomic
practices (regarding wild relatives occurring in traditional agricul-
tural fields) and environment (Table S3). Modeling of future
climates has predicted major negative impacts to cowpea, peanut,
potato (Jarvis et al., 2008b) and maize wild relatives (Ureta et al.,
2012). Vincent et al. (2019) projected varied but often major
impacts to a wide range of wild relative taxa worldwide.

Threat assessments for wild plants, such as IUCN Red Listing
(IUCN, 2021), may include analyses of change over time when data
are available, typically of range and population sizes. These studies are
not covered in full in this review.Many crop wild relatives lack recent
assessments, even in regions with active conservation programs
(Khoury et al., 2020). Haruntyunyan et al. (2010) Red Listed nine
wildwheatprogenitor (AegilopsL.) species inArmenia anddetermined
four to be threatened, mainly due to expansion of agriculture,
urbanization and uncontrolled grazing. European Red Listing efforts
for 572 wild relatives in 2011 estimated at least 11.5% of species to be
threatened (EuropeanCommission, 2019). Preliminary threat listings
for wild chile peppers (Khoury et al., 2019b), pumpkins (Khoury
et al., 2019c) and for 600wild relative taxa native to theUSA (Khoury
et al., 2020) identified many species as potentially threatened due to
small population and range sizes.Ananalysis of the drivers of threats to
North American native crop wild relatives included the following as
the main concerns: natural system modifications, residential and
commercial development, agriculture, invasive species, and pathogens
and crop-wild gene flow (Frances et al., 2018).

IV. Steps needed to advance knowledge about crop
genetic erosion

The hundreds of pieces of research considered here, published over
more than 80 yr and spanning an even longer study time frame,
represent a tremendous global effort to understand the magnitude,
trajectory and drivers of change in crop diversity worldwide. Yet
many questions remain. In this section, we outline persisting gaps
and challenges regarding conceptualizing, measuring and determin-
ing the agricultural and societal significance, as well as conservation
implications, of crop genetic erosion. We discuss steps needed to
further advance knowledge about changes in crop diversity.

1. Breadth, complexity and inclusiveness of crop genetic
erosion research

While crop genetic erosion research has provided extensive
information on annual cereals and a few other crop types, very
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little is known about changes in the diversity of pulses, starchy roots
and tubers, vegetables, fruits, oil crops, and sugar crops, much less
forage and feed crops, fibres, medicinals, ornamentals and other
cultivated plants. While some knowledge may be transferable
across crop types, differences in reproductive strategy, mode of
propagation and other characteristics lead to marked differences in
genetic variation (Miller & Schaal, 2006; Mckey et al., 2010;
Camadro, 2012). The literature on woody perennial crops has
indicated that long-term diversity trends may differ from those of
annual staples (Gross et al., 2014; Diaz-Garcia et al., 2020). While
these taxonomic and trait biases persist for both landraces and
modern cultivars, even less is currently known about their wild
relatives.

Regarding geographic coverage, large areas on every cultivated
continent, including regions historically recognized for diversity
in major crops (Vavilov, 1926; Khoury et al., 2016), remain to be
comprehensively studied. There is scant published information,
for example, on changes in the diversity of wheat in the Fertile
Crescent, maize in the Andean mountains or in sub-Saharan
Africa, sorghum in South Asia, common bean in Mesoamerica
and in the Andes, soybean in East Asia, potato in Europe, and
tomato in Mesoamerica and South America. Some of these
deficiencies, such as wheat in the Fertile Crescent, are for crops in
their centers of domestication, but significant stores of diversity
are also known to have existed in secondary centers, such as
Andean maize. In terms of study scale, more research is needed at
landscape and even larger levels to quantify change across the
metapopulations and trade networks understood to be the most
relevant spatial units within which diversity flows (McLean-
Rodr�ıguez et al., 2019). At the same time, more information is
needed about crop diversity typically ignored in larger
geographic-scale studies, such as that cultivated in homegardens
(Aguilar-Støen et al., 2009; Galluzzi et al., 2010; Hern�andez-
Andrade et al., 2019).

Further, the evidence base for changes in many other forms of
agricultural diversity needs to be bolstered, for example for
livestock, pollinators and soil organisms (Potts et al., 2010;
Garibaldi et al., 2013; Bruford et al., 2015; Sprunger et al., 2020).
Advances in genetic sequencing should enable a deeper under-
standing of change in less visible forms of associated diversity, such
as for associated endosphere and rhizosphere microorganisms
(Fahner et al., 2016). Ideally, genetic erosion research will become
more holistic by integrating assessments across the multiple crops
and associated biota within the study area (Lopez-Ridaura et al.,
2021).

Finally, while the expertise of crop diversity researchers/authors
is quite varied, including agronomy, plant breeding, genetics,
anthropology, conservation science and more, noticeably absent
among this community are farmers themselves. This shortcoming
in the diversity of voices in this conversation has undoubtedly
limited the world’s understanding of how diversity has changed,
and perhaps even more so the reasons for change and the effects on
farmers’ lives. The call for greater inclusivity, which has begun to be
voiced in research communities devoted to related existential
challenges such as climate change (David-Chavez &Gavin, 2018),
needs to be heeded in crop diversity conservation as well.

2. Robustness of the methods and underlying theory
regarding crop genetic erosion

Crop genetic erosion research will always be limited by gaps in
knowledge about the diversity that existed in the past (Box 2).
Ancient DNA techniques will help to shed further light on long-
term change, and where biological materials can be found and
defensibly matched to current diversity (Mascher et al., 2016;
Smith et al., 2019). However, these are indirect comparisons with
inherent uncertainty and many caveats (Lynch & Ho, 2020).

More sophisticated, larger scale, direct comparative methods are
needed. These will surely build on established methods and
protocols, but may also be supplemented by new applications, such
as crowd-sourcing farmer knowledge usingmobile phones and social
media (Fadda et al., 2020), the organization of local events to engage
farmers in research (Mainali et al., 2020), and the greater use of
remote sensing tools (Hutchinson & Weiss, 1999). The establish-
ment of useful baselines for crop diversity through the creation of a
network of collaborative observatories in appropriate sites around the
world and the development and application of robust, semistan-
dardizedmethods to document change, as has beendone to provide a
research resource regarding impacts on native plants due to climate
change (Franks et al., 2008), would provide an invaluable resource
for further crop genetic erosion research (Mercer et al., 2019).

Even when comparing diachronic variation in the same
populations and same locations, the dynamism of agricultural
diversity presents major challenges in quantifying change. Crop
diversity data need to be interpreted in their historical contexts; for
example, rules of naming or registering varieties have changed over
time (AppaRao et al., 2002; Jarvis et al., 2008a). Permanent change
needs to be better distinguished from relativelyminor or temporary
variation (Brush, 1999; Zeven, 1999; Brown, 2008), requiring
multiple time points over sufficient duration and relatively broad
geographic scale. Methods themselves may need further analysis;
similar studies have produced different results depending on the
crop andmethod (LeClerc et al., 2005; 2006; Zhao et al., 2006; Fu
& Dong, 2015).

With a few exceptions (Jordan et al., 1998; Fu& Somers, 2011),
genetic methods have tended to assess neutral alleles or to measure
overall diversity rather than focus on agronomically valuable traits.
This is partly due to the inherent challenge that many important
traits, such as yield, are quantitative and thus highly complex.
Phenotypic studies generally have targeted agronomically or
culturally important traits (e.g. Nersting et al., 2006; Diederichsen
et al., 2013; Schouten et al., 2019). A few of these studies have used
both genetic and phenotypic methods, but none integrated them
fully by assessing changes in genes for the specific measured
phenotypic characters. Increasing information on the functional
relevance of genes (Leroy et al., 2018) should enable genetic studies
to better assess the diversity that matters to agricultural produc-
tivity, sustainability, resilience, evolutionary potential and adaptive
capacity (Hufford et al., 2019). On the other hand, limitations in
our ability to predict traits important to future agricultural needs
and demands, especially given the uncertain impacts of climate
change, imply that genome-wide analyses will ptobably remain
relevant despite their deficiencies (Teixeira & Huber, 2021).
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While genetic research has provided considerable data on
changes in overall allelic diversity, more information is needed
about the apparent increasing homogeneity trend, at least for some
crops and in some regions, not only for modern cultivars but also
for landraces and crop wild relatives. A better understanding of
increasing similarity among varieties, including by documenting
associated factors such as cultivar turnover rate and pesticide use,
should contribute to deeper insights into crop genetic vulnerability
at field and landscape scales.

A particularly important methodological hurdle that, if over-
come, would generate a deeper understanding of the implications
of crop diversity change is the integration of temporal and spatial
trends (Bonneuil et al., 2012; AramburuMerlos&Hijmans, 2020;
Fenderson et al., 2020). The research to date provides much more
information on appearance/disappearance and numbers (richness)
of varieties than it does on changes in their geographic extent. Better
spatial data, for example through agricultural censuses, are needed.
Remote sensing and crop modeling may help to fill this gap at the
crop species level (Benami et al., 2021), while greater openness to
data sharing by seed industries would aid in a better understanding
of spatial change in modern cultivars.

3. Relevance of crop genetic erosion to society

Only a very limited number of studies have investigated crop
diversity change in ways that provide insights regarding human
nutrition (e.g. Davis et al., 2004; Fan et al., 2008). The association
between crop production diversity and dietary diversity, while
generally considered at least marginally positive, is complex, with
crop diversity potentially contributing to diversified diets through
both subsistence- and income-generating pathways (Remans et al.,
2011; Jones, 2017;Gupta et al., 2020). Lopez-Ridaura et al. (2021)
found that traditional polycultures in the highlands of Guatemala
better provided 14 essential nutrients, and were also more
productive, than maize monocultures. On the other hand, farm-
and district-level specialization (i.e. lower species and varietal
diversity) has been linked to productivity in some contexts,
potentially leading to higher incomes and the increased capacity to
purchase more nutritious diets (Kurosaki, 2003). Increased yields
of staple crops brought about by modern cultivars and related
agronomic practices are posited to have freed up arable land for
other (potentially more nutritionally dense) crops. For example, in
various Asian countries, the total cultivated area of rice has declined
since the 1970s, while diversity as measured by crop species
evenness has increased (Dawe, 2003).

There is scant published information on changes over time in
diversity within food supplies, trade systems or diets, particularly at
scales useful for understanding crop trends. Assessing changes in the
diversity of crops contributing to national food supplies globally
over the past 50 yr, Khoury et al. (2014) documented an increasing
richness of internationally traded crop commodities in national
food supplies, and greater evenness in the contribution of the
individual commodities to supplies, including a diminished
dominance of the formerly most important staple, as a result of
economic development, demographic change and globalization.
Oil crops in particular increased in their availability in food

supplies, while regionally important staple cereals and starchy root
and tuber species became further marginalized. These shifts have
led to greater similarities (i.e. homogeneity) among national food
supplies around the world, probably accompanied by losses of
locally unique crop species diversity. Diversification of commodity
crop species in national food supplies has been attributed primarily
to increased dependence on international trade (Aguiar et al.,
2020), even as diversity in import partners has narrowed (Kummu
et al., 2020), potentially indicating both increasing interconnect-
edness among, and vulnerabilities within, national food systems.

Measuring dietary diversity and understanding its impact on
human health also continue to be challenging. De Oliveira Otto
et al. (2015) found that while the richness and evenness of dietary
components were (weakly) positively correlated with diet quality,
and diet quality was associated with lower risk of type 2 diabetes,
dietary diversity itself was not associated with lower diabetes or
obesity. Bernhardt&O’Connor (2021) determined that increasing
species richness of aquatic foods did a better job in providing
multiple micronutrients and essential fatty acids to the human diet,
but didnot affect protein, and also increased concentrations of toxic
metal contaminants.

Furthermore, dietary diversity is generally measured at the food
group and sometimes at the food (i.e. crop or species) levels
(Remans et al., 2014), but only extremely rarely at varietal levels,
despite evidence of significant variation inmicronutrient quantities
and other nutritional factors among varieties (Marles, 2017; de
Haan et al., 2019). These nutritional factorsmay have also changed
over time due to plant breeding and farming practices (Davis et al.,
2004; Fan et al., 2008) although the temporal changes may not be
significant in relation to overall variation among varieties and
species (Marles, 2017).

4. Conservation implications of crop genetic erosion

While the urgency of conserving crop diversity has taken historical
precedence over detailed documentation and theoretical analysis,
gaps in our understanding of crop genetic erosion impact the
effectiveness of conservation. This is partly a result of the historical
lack of integration among research, monitoring and conservation
efforts. Research combining genetic erosion assessments and
conservation guidance appears to be gradually increasing (e.g.
Mart�ınez-Castillo et al., 2008; Legesse, 2019; Mulualem et al.,
2020).

Further progress in making research findings more relevant to
conservation can be made by conceptualizing the full extent of
extant crop diversity, for instance for a crop in a region, through
baseline documentation of the diversity of landraces, modern
cultivars and crop wild relatives, both in situ and ex situ, and
subsequently identifying those areas undergoing (or most likely to
undergo) rapid change. While these methods have been proposed
and partly elaborated upon under the rubrics of threat assessments,
early warning systems, conservation gap analyses and hotspot
analyses (e.g. Ram�ırez-Villegas et al., 2010; Pacicco et al., 2018;
Khoury et al., 2019a; Ramirez-Villegas et al., 2020), they have yet
to be fully developed and widely implemented, particularly
regarding temporal change aspects.
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V. Conclusion: mitigating, stemming and reversing
losses of crop diversity

After over a century of warnings about crop diversity loss, more
than 50 yr of concerted conservation efforts, and many decades of
active genetic erosion research, the cumulative evidence indicates
that enormous change in, and loss of, crop diversity have occurred
and continue to occur. Over 95% of all the crop genetic erosion
articles analyzed here reported diversity change, and almost 80%
found evidence of loss, the magnitude varying by species,
taxonomic and geographic scale, and region, as well as analytical
approach.

Major reductions of diversity of landraces in farmers’ fields and
of crop wild relatives in their natural habitats continue to transpire,
although substantial landrace diversity continues to be cultivated.
Cycles of decline and recovery in the overall genetic diversity of
modern cultivars are evident. Increasing homogeneity has been
documented among cultivars, landraces, wild relatives and national
food supplies. While there is little evidence for markedly reduced
diversity at the crop species scale globally (Hammer&Khoshbakht,
2005; van de Wouw et al., 2009; Khoury et al., 2014), a lack of
resolution in documentation probably masks losses of various
locally cultivated crops. Change in the diversity of genetic resources
held in ex situ conservation repositories, including loss of genetic
variation, is common.

A great many uncertainties remain regarding the significance of
these changes.Quantifyingmarked change in functional traits linked
to agricultural productivity, resilience and adaptive capacity, much
less human nutrition, remains more an ambition than a standard
protocol.While locally unique diversity has probably diminished, in
many cases it has not fully disappeared, but rather been relegated to
smaller cultivation areas, such as homegardens and marginal arable
lands (Aguilar-Støen et al., 2009; Galluzzi et al., 2010; Hern�andez-
Andrade et al., 2019). Whether such pools of persisting in situ
diversitymostlymitigate historical declines by continuing to provide
for local nutritional and cultural needs, or serve as sources of diversity
when larger cultivation areas are under stress, is largely unknown.
Also unclear is whether the diversity of genetic resources currently
maintained ex situ is sufficient to support crop breeding needs into
agriculture’s unpredictable future. The status of representation of
crop diversity in ex situ and in situ/on-farm conservation systems,
compared to that in farmers’ fields, natural habitats and seed systems,
remains to be fully assessed.

Future progress in documenting and addressing crop genetic
erosion requires better recognition of complex, pluralistic and
seemingly paradoxical findings. Crop diversity may be decreasing,
being maintained and increasing, all at the same time, in different
forms andatdifferent scales.These trajectories constantly changedue
to a range of anthropogenic and environmental drivers, many of
which cannot be easily predicted. Since change is constant, the focus
should be on identifying the most consequential changes, including
better understanding for what and to whom they are significant.

As we will never know the full scope of crop diversity in the past,
and are unable to fully predict future threats, limits to our knowledge
must also be acknowledged and managed. This uncertainty,
however, should not undercut the conservation imperative (CBD,

1992). The individual passion and collaborative enthusiasm of crop
diversity activists in the early days of the conceptualization of genetic
erosion mobilized, despite limited information and documentation,
one of the largest conservation ‘rescue’ efforts in human history
(Mooney, 1983). These initiatives need to be continued in updated
forms, incorporating the knowledge and lessons generated through
decades of research and action.

Research suggests where changes are likely to occur and cause
significant diversity loss. These include areas whose connectivity is
rapidly increasing. They are regions where agricultural communi-
ties are undergoing demographic shifts, such as out-migration, and
commercialization of land and labor; where climate change is most
acute; and those affected by war and strife. Other areas where crop
diversity loss is likely include where formal seed systems are losing
public breeding institutions and seed companies are consolidating,
and where conservation repositories lack stable funding and
adequate infrastructure.

Ex situ conservation Given ongoing losses of crop diversity from
farmers’ fields, natural habitats and seed systems, evident simpli-
fication and homogenization of the diversity persisting in these
environments, and increasing anthropogenic pressures, including
habitat destruction and climate change, caution dictates that
continued efforts should be made to mitigate further loss by
safeguarding crop diversity ex situ, where the methodologies and
infrastructure are largely established and relatively cost-effective.
Nevertheless, the capacities of conservation repositories to main-
tain crop diversity and minimize genetic erosion need further
improvement (Lawrence, 2002), and safety duplication should
continue to be a priority (Westengen et al., 2013). This is
important not only in terms of the potential of genebanks to
maximize the option value of ex situ genetic resources as a
contribution to present and future agriculture, but also to provide a
historical record of crop diversity in this period of unprecedented
global change.

It is also ever more important that ex situ collections are accessible
to those working toward the productivity and sustainability of
agriculture, including farmers, especially those cultivating in envi-
ronments and for markets that still are not, and may never be, well
served by formal crop breeding programs. Efforts to directly connect
genetic resources maintained in national and international ex situ
repositories with farmers are providing innovations (Westengen
et al., 2018; Ceccarelli & Grando, 2020; Fadda et al., 2020).
Community seedbanks should be further embraced for their
important role in facilitating local access to diversity (Vernooy et al.,
2017). International and national policies regarding access and
benefit sharing to genetic resources require further progress to
support both plant breedingneeds and farmers’ rights tomanage and
exchange crop diversity (Halewood et al., 2020).

In situ and on-farm conservation In situ and on-farm conserva-
tion of crops and their wild relatives must be further embraced if
this diversity is to continue to evolve alongside climate, pest and
disease, and other pressures (Bennett, 1968; Berthaud, 1997;
Bellon et al., 2018), and if the evidence regarding the critical value
of crop diversity to ecological processes, agroecosystem resilience
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and small-holder farmers’ livelihoods (Mijatovi�c et al., 2013; Fenzi
& Bonneuil, 2016; Sirami et al., 2019) is to be embraced and
translated into action. It is also essential that ex situ and in situ
approaches are better integrated, providing links to holistically
monitor crop diversity, fill gaps (e.g. through further collecting for
conservation in genebanks and repatriation of genebank samples to
farmers) and implement benefit sharing (Stenner et al., 2016;
Schwartz et al., 2017; Mercer et al., 2019; AGUAPAN, 2021).

Further development of on-farm conservation methods contin-
ues to be needed,with an emphasis on bolstering the conditions and
processes that foster diversity (Brush, 2004; Bellon et al., 2017;
Guzzon et al., 2021), and particularly through support for farmer-
led efforts (Stenner et al., 2016; AGUAPAN, 2021; Halewood
et al., 2021). Such autonomous, informal conservation processes,
including the traditional seed systems which promote the exchange
and influx of new diversity (Engels et al., 2008; Thomas et al.,
2012), should be embraced for their strengths, regardless of the
difficulties in quantifying their effectiveness due to their inherent
dynamism.

On-farm conservation interventions may be warranted where
there is evidence of ongoing or upcoming threats to important
diversity or where there is demand for recovering diversity already
lost. A range of pertinent community-based conservation tools have
been developed, including diversity inventories and fairs, agrobio-
diversity zoning and crop diversity park systems, specialized
markets, participatory evolutionary breeding, and payments for
agrobiodiversity conservation services (Tapia, 2000; Narloch et al.,
2011; Graddy, 2014; Fadda et al., 2020). Options appropriate to
location and culture should be identified based on participatory
processes (de Haan, 2021).

For crop wild relatives, highlighting the importance of these
species, developing inventories andmonitoring, and implementing
management plans for the protection of critical habitats and
populations (potentially also including assisted migration) are
essential. Large-scale efforts toward the expansion of natural area
conservation, including 309 30 and Half-Earth, would, if imple-
mented, probably enhance conservation of crop wild relatives.
Recognizing the roles and the rights of Indigenous and agrarian
peoples within such initiatives will be important to the survival of
many crop wild relative populations, as well as to landrace
conservation.

Formal seed systems For modern cultivars, continued advocacy
for diversification of the genetic bases of commodity crops is
important to avoid major production losses from genetic vulner-
ability (Cooper et al., 2001; Penna et al., 2019). Reinvestment in
public breeding programs, providing prebreeding and other
diversification services to formal seed systems, will probably be
critical (Warburton et al., 2006; Coe et al., 2020). Farmer
participatory breeding initiatives focused onmodern cultivars have
also shown potential to contribute to varietal diversification
(Lammerts van Bueren et al., 2018). Further critical assessments
of seed sector consolidation, varietal release procedures and
intellectual property tools (i.e. UPOV and patents), and advanced
breeding technologies (e.g. genetic modification and gene editing)
are needed to develop and implement strategies to minimize

negative impacts on modern cultivar diversity (Kolady & Lesser,
2012; van de Wouw et al., 2013; Howard, 2015).

Societal change Reversing the trajectory of crop genetic erosion
requires more profound change – no less than reorganizing global
agriculture, and food systems, and even the human societies they
nourish, to become diversity-supportive processes (Ceccarelli &
Grando, 2020; Clement et al., 2021). Crop diversity must be valued
not only as a genetic resource to be exploited, but just as much for its
cultural andecological values (Fenzi&Bonneuil,2016).This implies
a (re)integration of species, varietal and genetic diversity into
agricultural systems, both temporally and spatially, as well as the (re)
establishment of local autonomy and markets supporting the
processes that foster the ongoing evolution of this diversity.

The importance of crop and other forms of agricultural
diversity and their conservation need to become core messages in
educational curricula and public awareness efforts (Esquinas-
Alc�azar, 2005; Khoury et al., 2020). Ultimately, creating the
conditions in which crop diversity can thrive within agriculture
and food systems will necessitate widespread societal recognition
that this diversity underpins our productivity, resilience and
capacity to adapt to an ever-changing future (Hufford et al., 2019;
Pilling et al., 2020).
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