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The combine will tell the truth:
On precision agriculture and
algorithmic rationality

Christopher Miles

Abstract

Recent technological and methodological changes in farming have led to an emerging set of claims about the role of digital

technology in food production. Known as precision agriculture, the integration of digital management and surveillance

technologies in farming is normatively presented as a revolutionary transformation. Proponents contend that machine

learning, Big Data, and automation will create more accurate, efficient, transparent, and environmentally friendly food

production, staving off both food insecurity and ecological ruin. This article contributes a critique of these rhetorical and

discursive claims to a growing body of critical literature on precision agriculture. It argues precision agriculture is less a

revolution than an evolution, an effort to shore up and intensify the conventional farming system responsible for

generating many of the social and environmental problems precision agriculture is presented as solving. While precision

agriculture advocates portray it as a radical, even democratic epistemological break with the past, this paper locates truth

claims surrounding datafication and algorithmic control in farming within deeper historical contexts of the capitalist

rationalization of production and efforts to quantify and automate physical and mental labor. Abjuring the growing

cultural tendency to treat algorithmic systems as revolutionary in favor of social and historical dimensions of precision

agriculture, can help re-frame the discussion about its design and use around real, socially and ecologically oriented

change in farming, and so ensure that the possibilities and benefits of precision agriculture are as evenly and effectively

shared as possible.
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Introduction

In Capital, Marx points out that before machines could
become useful, legitimate, common—in a word, nor-
mal—people themselves had to first be made
machine-like (1976). Much the same has been true of
the land itself. Before tractors could trawl the plains, or
crops stand like soldiers on a field of battle, orders of
property, systems of farming, and ideas about agricul-
tural practice had to first take something like a factory
form. Today, the 500-year-old political-economic
system responsible for that mechanization is confronted
by the ruinous, epochal consequences of its tenure

(Chakrabarty, 2009). Yet, advocates contend, the
reach of digital media technologies, Big Data, and algo-
rithmic processing appear to offer a way out. As in the
19th century, imaginaries and economies, tools and
everyday tasks are being made mechanical, only now
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in the image of the information machine. And, then as
now, slower and more resistant to such transformations
than other types of work (Goodman et al., 1987), farm-
ing in the United States is nevertheless following suit.

The process of agricultural digitization has unfolded
unevenly across different areas of farming over the past
40 years, but might be grouped into two general fields,
the biological and the mechanical (ETC Group, 2016).
The first and earlier was the computerization of agricul-
tural biology: the digital apprehension of genetic matter
and the development of information-based tools for bio-
logical management, experimentation, and manipulation
of seeds, livestock, pesticides and hormones
(Kloppenberg, 2004; Pechlaner, 2012). The second
encompasses farm machinery and the insinuation of
computerized information technology into farm man-
agement, from satellites and tractors to drones and
machine learning algorithms, and is popularly known
as precision agriculture (PA).1 Together, these develop-
ments mean that most aspects of conventional farming,
from seeds to harvesters to the ‘‘supply chain’’ itself, are
increasingly understood through and executed with
information, data, and digital media technologies. PA
has been under de facto development since at least the
mid 1980s. But as automation, the harvest of Big Data
from fields and farm operations, algorithm-assisted wea-
ther prediction, and planting prescriptions have been
integrated into farm equipment and management, PA
has been swept up in a broader enthusiasm about Big
Data and algorithmic technologies.

The most consistent discursive features of PA are a
claim and a framework. The claim is that world popu-
lation will rise to nearly 10 billion people by 2050, and
global food production must grow from 60% to 100%
while also reducing its net impact on the environment
using roughly the same amount of land currently in
cultivation, in order to keep the world fed and secure
(e.g. Debats et al., 2016; Grose, 2015; Santhosh et al.,
2003. This is equally de rigeur in reporting and scho-
larly texts.). Accordingly, precision farming is often
framed in popular press, industry marketing, technical
literature, and critical accounts, as ‘‘revolutionary’’
answer to this problem; a disruptive, and broadly posi-
tive force changing agriculture for the better, by degrees
ranging from cautiously optimistic to epochal (Ryder,
2014; Sonka and Cheng, 2015). Some see PA as
‘‘technological alchemy’’ (Brummel, 2014) ushering in
nothing less than a ‘‘3rd green revolution’’ (CEMA
European Agricultural Machinery, 2015; Powell,
2017); others describe it as part of an even broader
4th industrial revolution precipitated by the rise of
Big Data, machine learning, automation, and artificial
intelligence (Lelea and Goswamib, 2017). Even the as
yet limited critical scholarship on PA tends to frame it
this way: in an earlier volume of this journal, Bronson

and Kzneviac (2016: 1) open their (excellent) commen-
tary on ‘‘Big Data in food and agriculture’’ with the
declaration that ‘‘farming is undergoing a digital revo-
lution.’’ Carolan describes the datafication of farm
operations in a similar idiom: ‘‘it is a bit of a surprise
that social scientists are only beginning to critically
analyze and understand what the Big Data and preci-
sion revolutions mean for farmers and food futures
more generally’’ (2018: 749).

While these and a handful of other scholars
(Carbonell, 2016; Murray, 2018; Schiller and Yeo,
2016) have articulated much about the datafication
of farming, little attention has been paid to the cul-
tural and discursive constitution of the system known
as PA2. Bronson and Kzneviac note this explicitly in
their commentary, where they call for research into
the ways in which high-tech and revolutionary ima-
gery ‘‘circulating in the promotion of Big Data tools
normalize[s] hegemonic farming systems’’ (2016: 3).

This article seeks to answer that call with a critique
of the glittering imaginary of algorithmic disruption
and digital revolution in US agriculture. ‘‘Precision
farming’’ is shorthand for efforts to reorganize conven-
tional farming’s epistemological and professional foun-
dations around informatic, algorithmic principles.
Drawing on culturally and rhetorically focused schol-
arship in Media Studies and STS, this article builds
upon the argument Wolf and Buttel (1996) advanced
over 20 years ago: that far from revolutionary, PA is
better understood as a normative force—cutting-edge
means for overcoming issues endemic to the industrial
production of agricultural commodities and preserving
capitalist modes of production. Like the ‘‘Green
Revolution’’ before it, PA as it exists in effect offers
technological solutions to social, political, and environ-
mental problems. Such solutions appear designed to
leave the conventional, market-oriented farming
system responsible for many of these problems intact.
In short, contrary to its dominant expression, I argue
that precision agriculture is conventional agriculture.

What has changed since Wolf and Buttel wrote is the
emergence of a language of algorithms and data-driven
insights lending new persuasive epistemological force to
PA. While usually presented as a break with the past,
the high-tech algorithmic patina of PA obscures the
reality of evolution; of an intensification of well-estab-
lished features of conventional farming. This is not to
suggest that the datafication of farming is without its
own specific consequences—that digitization of farm
operations does not represent any change whatsoever.
The shift from a kind of disciplinary, whole-field man-
agement style towards an individualizing, informatic
system of sub-field control has already raised new
issues in conventional farming, from concerns about
automation (Murray, 2018), to rights over data
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(Carolan, 2017), to farm consolidation (MacDonald
et al., 2013). But, as I will argue, these issues stem
from the deeper grammar of capitalist organization of
production and fundamental liberal tenets of social
order via free markets and faith in rationality, rather
than the technologically determinist image of data-
driven ‘‘revolution.’’

Methods

This essay is based in part on some 40 interviews withUS
farmers in the Northeast and Midwest: US Extension
Service and Research Station scientists, USDA employ-
ees, scholars of food and farming systems, equipment
dealers, and agricultural businesspeople. It draws on
observations on US farms in those regions, proceedings
of industry and academic conferences, and scholarship
on PA, environmental history, food and farming sys-
tems, and critical algorithm studies. This empirically
grounded, discursively oriented article is intended as a
contribution to the growing body of work on PA in the
traditions of Media Studies and STS.

Normativity

To use a term as contested as ‘‘normative’’ begs clarifi-
cation. I see the normal, normative, and normativity—if
taken as the same concept—as belonging to two general
traditions of use. One circulates largely within analytic
philosophy, economics, and legal discourse: an evalu-
ative or moral standard, prescriptively describing some-
thing as it ‘‘ought’’ to be, as in normative economics, or
connoting the ‘‘norms’’ of a society (e.g. Warner, 2016).

The second sense is the normal as the hegemonic
and/or legitimate—as the epistemologically, ideologic-
ally, or culturally dominant. This sense belongs to an
academic lineage influenced by the work of Michel
Foucault among others, which has been especially
important to queer theory, Gender Studies, Cultural
Studies, and related disciplines focused on power,
meaning, and identity. The normativity of this tradition
developed in opposition to the queer as it was estab-
lished as a motive concept in the early 1990s, as scho-
lars gathered concepts—the dominant, the legitimate,
the ordinary, the typical—under a single mangle of
normativity, against which the queer has been variably
defined (e.g. Halperin, 1995).

When calling the use of algorithms and Big Data in
farming normative, I invoke this latter sense of the
normal as culturally hegemonic, conscious of how
both senses have been historically entwined with what
normal means today. This definition evokes what
Raymond Williams meant by a dominant ‘‘structure
of feeling,’’ in his analysis of the uneven and dynamic
interrelations of meaning and power at play within

cultures as they change over time (1977). It recalls
also the Gramscian notion of consistorial hegemony,
where the legitimacy of a dominant order requires
popular consent resulting from that order’s ability to
rearticulate challenges to its power in its own terms as
common sense (Gramsci, 2011: 173). I see PA discourse
as doing precisely this kind of persuasive, imaginary-
shaping work.

If one wanted to synthesize these two general defin-
itions of the norm, it would be hard to do better than
‘‘a value disguised as a fact’’ (Cryle and Stephens, 2017:
6). This is the sense in which I argue that PA discourse
enacts a form of algorithmic normativity, and clothes a
number of positioned values in the guise of simple,
quantifiable, technical facts.

Precision agriculture

PA is not a single technology, but a system character-
ized by the ‘‘employment of computational and infor-
mation technologies to improve the profitability and
sustainability of agriculture’’ (Van Es et al., 2016: v).
The following section offers a general outline of that
system. It is important to note that this is an idealized
description, and that actual adoption varies depending
on farm size, farm type, and farmer age and education,
among other variables (see Pierpaoli et al., 2013;
Schimmelpfennig, 2016).

PA is often characterized as those technologies that
enable a shift from ‘‘field level’’ to ‘‘sub-field’’ manage-
ment within mechanized agriculture (e.g. Grisso et al.,
2009: 2). Most sources point to the declassification of
the Global Positioning System (GPS) for civilian use,
and the development of farm-specific Geographical
Information System (GIS) in the early 1990s, as first
steps towards PA as such (e.g. Lowenberg-Deboer,
2015; Mulla, 2013). The earliest and most enduring
GPS-linked farm technologies are lightbar and autos-
teer systems (Larsen et al., 1994), devices that help
farmers plot more efficient routes. Autosteer, currently
the most popular PA technology (Schimmelpfennig,
2016), is a kind of quasi-automation; it uses GPS and
GIS to map a given field and organize routes, allowing
farmers to guide their vehicles with little actual driving.
Autosteer is designed to keep planting or crop row
overlap to a minimum, and to offer relief to farmers
planting, treating, or harvesting fields. Today, these
systems are often augmented with Real Time Kinesis
stations; satellite-linked relay boxes that can increase
plotting control up to sub-centimeter degrees of accur-
acy (Grisso et al., 2009).

A second fundamental component of the PA system
is field mapping, itself integral to several further types of
precision technology. Proprietary mapping software
offered by companies like John Deere, AGCO, or
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Monsanto’s Climate Corporation take satellite or drone
images of a field and augment those images with data
layers. These include yield or historical profitability
maps, which serve in turn as a foundation for making
management decisions and to identify opportunities for
integrating other forms of PA technology. Variable rate
technology (VRT), for instance, which allows farmers to
alter seeding rate for planting crops or the amount of
pesticides applied in different areas in real time, depends
on these spatial computations. VRT works in concert
with GIS, autosteer, and field-mapping: a farmer can
take a previous year’s yield map, overlay it with a soil
quality map, develop planting, spraying, or watering
‘‘prescriptions’’ for different areas, and load the routine
into the planter, which will customize the rate of appli-
cation as it traverses the field.

Accordingly, surveillance and monitoring technolo-
gies constitute a third core component of contemporary
PA systems. These are myriad, and include many forms
of overhead sensing (multi-spectral, LIDAR, NDVI,
and others) by satellite, plane, and drone; real-time
soil monitors; machine-mounted sensors for tractors
or irrigation systems. These also encompass Radio
Frequency Identification management for livestock
and equipment, behavioral surveillance, and biological
monitoring of stomach content and excrement in live-
stock. Most of these sensing systems communicate with
integrated, proprietary management platforms like
John Deere’s Operations Center system. Aerially
sourced Normalized Vegetative Difference Index data,
for instance, measure the reflectivity of chlorophyll to
identify specific areas where crops are under stress, or
offer prescriptions for area-specific nutrient treatments
(Schmidt et al., 2009). Plugged into a PA platform, such
data analytics and algorithmic treatment prescriptions
can be integrated with other layers to give farmers a
multi-faceted picture of a field’s prospects. Combining
these disparate elements into a single, quantified picture
builds a faith among some farmers in these aggregated,
algorithmically regulated pictures as more correct,
more accurate, and more precise. As one Indiana
farmer explained to me, this data-driven rigor is a big
part of the appeal of PA technology: unlike subjective,
fallible human observations, ‘‘the combine will tell the
truth; when you go through your machine, you know
it’s right.’’

While genetic technology is not always included in
discussions of precision farming, a minute engineering
of biology echoes the aims and approaches of autosteer
or VRT. For instance, it is increasingly common to see
digital surveillance and algorithmic processing used for
biometric trait assessment and behavior analytics, or
for determining things like feed amounts or medication
regimes for livestock to optimize things like milk prod-
uctivity (Doreà et al., 2018). At an NSF conference on

machine learning in agriculture, Iowa plant scientist Pat
Schnable described how precision technologies build
upon research on engineering certain crops to ‘‘tolerate
crowding better,’’ underway since the 1930s (2017).
Using overhead time-lapse photography, researchers
have observed the leaf rotations of specific hybrid lin-
eages over the course of a day. Linked to their genetic
profiles, this research maps ‘‘the genetic determinants
that allow plants to rotate, or not to rotate’’ (2017). The
goal is to engineer new discipline into the already
countless, martial rows of corn, policing maize‘s very
comportment to the degree that it ignores its most
ancient urge, to follow the sun.

Algorithmically regulated automation is prominent
in the socio-technical imaginary of PA. As an
Extension Service farm machinery expert put it to me,
in order to get the most valuable insights out of
machine learning in farming, farmers will eventually
need to transfer authority to machines and algorithms
altogether: ‘‘the next step is to go beyond where the
farmer or operator is making decisions on each field,
it’s going to move towards a situation where the com-
puter is taking that data and making decisions for the
farmer all the time.’’ Perhaps unsurprisingly, opinions
among farmers on this point are varied, and most
owners I have spoken with prefer a vision of the
future that includes them. Farmers have described scen-
arios in which they traverse their fields followed by
squads of robotic tractors, human captains in com-
mand of a drone fleet. One farmer put it this way:

A: . . . I mean a lot of these machines are being built to

think for you, I mean whether it’s engine performance,

whether it’s settings on a combine, that type of thing,

it’s changing those things on the go, or the capability’s

coming where it’s going to be able to . . . take all the

guesswork out. I mean in many ways that’s a good

thing I think, because it allows us to put an operator

in the seat that’s a different kind of operator. He might

be an analytic guy and not a machine operator, right, as

long as he can read the analytics and make sure it’s

functioning properly.

Q: So you’re saying that the person sitting in a combine

will be a data analyst, rather than a . . .

A: A combine operator.

Finally, datafication of farm management establishes a
quantified stratum that allows for direct links between
economic analyses and farm operations. Farmers in
New York, Ohio, Indiana, and Illinois have expressed
to me how critical market data are in deciding what
crops or hybrids they choose to plant, as well as how,
when, and why they offer futures contracts on their
harvest. Harvesting itself can be dictated by markets,
at both the macro- and micro-level. If a grain farmer
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using Cargill’s Grainbridge software is told that Asian
markets will close on a higher price for soybeans than is
likely tomorrow, that farmer may choose to spend their
night transporting their grain to an elevator for sale
before the cutoff. This is another way in which sensors
are useful—if your combine is equipped to measure the
moisture content of your grain, you will know how
much drying it needs before being sold to the elevator,
which directly affects the price.

PA data is thus increasingly poised to provide ‘‘trace-
ability’’ or ‘‘transparency’’ in the processing of food, an
industry largely beholden to corporations like Nestle or
Kraft, and grocery store chains like Kroger or Walmart.
In an era of green or local marketing, Ag data is indis-
pensible for a phenomenon Loconto and Busch have
called ‘‘standards governance’’ (2010). Walmart, for
instance, holds sway over 76 million acres of farmland,
in that they can exercise serious leverage over the pro-
duction choices of farmers under contract to sell in their
stores (2019). Consequently, technology that provides
such information is becoming compulsory for farmers
who want to sell their products through such lucrative,
private markets. As one executive told a ‘‘Digital Ag’’
food industry meeting this November, moving forward,
if ‘‘youwanna do business withWalmart, you gotta have
the traceability.’’

Digital technologies are not only involved in solving
particular problems for farmers. In creating the very
grounds for assessing the value of a certain strain or
the parameters for when to plant, they generate prob-
lems, questions, and possibilities themselves. And as
historians of computing and digital technology have
repeatedly demonstrated against claims of machinic
objectivity, biases and normativities inhere in computa-
tional technologies (Friedman and Nissembaum, 1996).
In the same spirit, I will now turn to the ways in which
PA discourse embodies and circulates algorithmic
normativities.

Algorithmic rationality

Algorithms have authorized PA in two ways. The first
follows from a sense in which modernity itself may be
understood as algorithmic. This is algorithmic ration-
ality: the reorganization of industry and reasoning
upon rule-based grounds, fueled by the emergence of
capitalism and the liberal nation-state. The second owes
to emergent shifts in the connotations of algorithm over
the past decade, discourses of Big Data, artificial intel-
ligence, and computation as effective and democratic
(Striphas, 2016). This is algorithmic epistemology: a
fetishization of information that ascribes super-natural
divination to digital technology (cf. Chun, 2011).
Unpacking what I mean by algorithmic in these two
ways will illustrate how, far from representing a

revolutionary break, PA is better understood as part
of a general intensification or evolution of long-
established production systems characterized by ration-
alization and control.

Erickson et al. (2013) trace this process across an
epistemological shift from dominant intellectual dis-
courses of Enlightenment reason, to a rule-based algo-
rithmic rationality: ‘‘a finite, well-defined set of rules to
be applied unambiguously in specified settings’’ (26).
While Enlightenment-era reason and modern rational-
ity have much in common, e.g. an emphasis on risk,
utility, and formal procedure, they rest on fairly distinct
epistemological foundations. Reasoning is an act of
judgment, and so implies wisdom, deliberation, and
positioned subjectivity; it carries the potential for dis-
agreement and uncertainty. Rules and rationalization
are by contrast clearly defined, quantitative, and
designed to be universal and conclusive. Where
reason implies embodied history, rationality aspires to
abstract, functional, rule-bound parameters (2013).

Totaro and Ninno’s (2014) analysis frames the tran-
sition to modern rationality from medieval theory in
terms of a move from substance to function. They
argue that rationality is algorithmic, that algorithms
are recursive functions, and that although rationality
broke from the sphere of mathematics and ‘‘invaded’’
the fabric of everyday life over the 19th and 20th cen-
turies, rationality qua algorithms remains beholden to a
numerical logic incommensurate with the everyday
world. Unlike a medieval Aristotelian essence, a math-
ematical function is a value inherently defined ‘‘in rela-
tion to a variable or variables upon which its value
depends’’ (‘‘function’’.n.). For Totaro and Ninno,
both physical machines and abstract algorithms involve
a general form of calculability through recursive func-
tions—sets of operations that repetitively operate on
themselves, i.e. the circular action of a gear. The kin-
ship between the mechanical and the algorithmic lies in
the fact that ‘‘all machines run an algorithm,’’ and that
‘‘one can say [machines] are the materialization of an
algorithm, which in itself is a logical object’’ (32).
As the world became more mechanical, it necessarily
grew more algorithmic.

But what precipitated this invasion? The birth of an
algorithmic modernity did not simply follow from the
mechanization of industry. Rather, as Marx made
clear, mechanization followed more primary transform-
ations in economic activity, and formalized procedures
for manufacturing goods or managing bureaucracies
that transformed human thought and activities
(Marx, 1976: 455–470).

By the time Adam Smith published The Wealth of
Nations in 1776, a capitalist world-economic system
had been growing for roughly 200 years (Smith, 1981;
Wood, 2017). Its spread was instrumental to the

Miles 5



transition from a medieval ontology attuned to sub-
stances and essence (e.g. coins as intrinsically valuable
owing to the metal of their mint), to inherently rela-
tional systems of commodities, valuation, capital, and
money (e.g. coins, paper money, credit as symbolically
valuable). This functionalist, rule-based system of pro-
duction gradually reorganized economic and political
systems around its logic, and lent growing material
force to 18th century liberal critiques of divine political
authority and economic paternalism.

Smith’s intervention in debates between Physiocratic
beliefs in natural order and Cameralist ‘‘political
œconomy’’ over the 17th century helped popularize a
new economic model in closer accord with the emerging
rationality of bourgeois capitalist production
(Harcourt, 2012). His (in)famous fable of the pin-
factory is notable both for capturing a historical tran-
sition in action, and for providing a pithy, persuasive
account of that emergent rationality: take the work of a
skilled craftsman, break it into discrete steps, assign
those to ‘‘unskilled’’ individual workers, and so
increase the efficiency of producing both commodities
and surplus value. Smith pithily captured the condition
of possibility for mechanization as such—the mechan-
ization of labor (which is to say, laborers)—i.e. the
rationalization of production into recursive algorithmic
processes necessary before actual machines became
sensible for the factory floor.

Like most crafts, farming adopted industrialization
unevenly. One important step towards greater rational-
ization and commodification in the United States was
the introduction of common standards for grain,
futures markets for their harvest, and the regulation
of these through the Chicago Board of Trade in the
mid 1800s (Cronon, 1991). These regimes not only
encouraged mass production of interchangeable
wheat, they helped make farmers fungible commodities
themselves, in that standardized grades allowed pro-
duce to be assessed independently of the farm it came
from. Where previously an important organizing logic
was reputation (‘farmer Tom grows excellent corn, and
it fetches a higher price’); standardization rendered
products quantifiably equivalent commodities within a
grade (‘Class 1 drinkable milk fetches a higher price
than Class 3 cheese milk’; cf. Harcourt, 2012).

Similarly, a series of government acts over the 19th
century were critical for developing more uniform,
rationalized approaches to farming. The 1862 Morrill
Land-Grant Act established agricultural research col-
leges across the US, the 1887 Hatch Act funded new
experiment stations at those colleges, and the 1914
Smith-Lever Act created the US Extension Service for
the public distribution of agricultural research.
Together, these acts laid down the basic techno-scien-
tific infrastructure needed to make ‘‘every farm a

factory’’ (Fitzgerald, 2003). During the 1910s and
1920s, agricultural engineers helped spread an indus-
trial ideal among farmers, while promoting tractors,
electrification, pesticides, chemical fertilizers, and
hybrid seeds in the efforts to make farms as rational
and factory-like as possible (2003). Where once most
American farmers had been effectively self-sufficient
and raised a diversity of flora and fauna, they were
increasingly encouraged through policy, education,
and economic changes to reorganize their farms
around mechanical logic more suited to high-intensity
commodity production, which required inputs manu-
factured elsewhere. This in turn fueled commercial
efforts to commodify farming, creating new dependen-
cies on tractor manufacturers, chemical producers, and,
later, seed supply companies. Hybrid technology cre-
ated in the 1930s permitted the capture, control, and
industrialization of seed production, transforming
seeds from a renewable asset into a commodified
input, a model extended by the legal license
to patent living things through genetic ‘‘authorship’’
60 years later.

PA represents to the present what farm manage-
ment, mechanization, hybridization and artificial
inputs represented to the past: a movement to further
transform objects (and now activities) into discrete
commodities, to extend the reach of capital, and to
accumulate entire new geographies of possibility to
the market’s logic. The common thread connecting
these two moments—the development of mechanically
and chemically facilitated field-level management, and
digitally facilitated sub-field management—is that of
rationalization: first of physical, and later mental
activities.

Algorithmic epistemology

An early step in this process occurred in 1791, when
French revolutionary and mathematician Gaspard de
Prony embarked on a project to translate logarithmic
tables for shipping into the new decimal system. De
Prony’s approach was directly inspired by Smith’s
arguments for the rationalization of labor. Seizing on
the essentially algorithmic logic of Smith’s rationalized
manufactory, de Prony reckoned he could ‘‘manufac-
ture logarithms as one manufactures pins’’ (Campbell-
Kelly et al., 2013: 5). Accordingly, he broke the
complex mathematical work of the project into a
series of simplified tasks, such that the bulk of the
labor needed only basic arithmetic that could be per-
formed by out of work manual laborers de Prony hired
as human computers.

By applying the philosophy of economic rationaliza-
tion to intellectual labor, de Prony took an important
step towards transforming mathematical reasoning into
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algorithmic manufacturing (Erickson et al., 2013).
De Prony’s work on that score in turn influenced
Charles Babbage, who saw that such a rule-based
system could be literally mechanized; the difference
and analytical engines he conceived with Ada
Lovelace took the next logical step. Babbage had
essentially designed a factory for numbers, and so
even more intimately insinuated algorithmic rationality
with economic rationalization (2013).

From this perspective, later development of the digi-
tal computer, the algorithms it embodies, and their sub-
sequent ‘‘invasion’’ of everyday life were all part of a
centuries-long transformation of algorithms from tools
of reason to machines of rationality. The rise of algo-
rithmic rationality in economics was substantially
assisted by the engine of capital and the patriarchal,
oiko-nomic epistemology that developed to harness it
(cf. Dubber, 2005). If modernity entails an imperative
towards rationalization, and the algorithm can operate
across all walks of life as a metaphor for rule-based
orders of politics, economics, and epistemology, it is
reasonable in turn to describe the globally normative
liberal-capitalist order as deeply algorithmic (cf. Totaro
and Ninno, 2014). And if calculation could be trans-
formed from evidence of genius to the gears of a calcu-
lator, and later to a Turing machine, why couldn’t
other supposedly exclusive human functions, in a
world now so thoroughly rationalized, be subject to
the same process?

These questions are the origins of a more recent
form of algorithmic rationalization, part of the ‘‘era
of Big Data’’ (Boyd and Crawford, 2012: 663) to
which PA belongs. Growing faith in the application
of so called ‘‘data-driven’’ models, analytics, and solu-
tions to complex social and cultural issues, something
Boyd and Crawford have described as the ‘‘mythology’’
of Big Data (663), has led to calls for the algorithmic
rationalization of once ostensibly exclusively human
practices, including government (Medina, 2015), poli-
cing (Ferguson, 2017), taste curation (Hallinan and
Striphas, 2014), and much more. Pushes for more algo-
rithm-driven management of economics, culture, politics,
or everyday life involve some by now well-established
discursive tropes: computing is objective, humans are fal-
lible, data is the harvestable raw matter of truth
(Gitelsen, 2013). They also often invoke the rhetorical
trappings of egalitarianism and democracy: on the one
hand, because data and computers are treated as
unbiased, and on the other, through appeals to the
crowd and its wisdom; the idea that ‘‘crowdsourcing’’
of data is a more egalitarian path to truths and best
practices than are ostensible experts.

This discourse is very much at play in PA. Among
the most prominent startups in PA, for instance,
Farmer’s Business Network (FBN) explicitly presents

itself in this idiom. FBN markets itself as an ‘‘independ-
ent and unbiased farmer-to-farmer’’ network, that
‘‘democratizes farm information by making the power
of anonymous aggregated analytics available to all
FBN members . . . [FBN] helps level the playing field
for independent farmers’’ (FBN, 2019). The ‘‘network’’
in FBN is that of their farmer members, who pool their
agronomic data—varieties planted, yields, machine
data, marketing and finance data, etc.—into FBN’s
online platform, which its co-founder characterized as
‘‘a technology-aided version of the small talk farmers
would make at a coffee shop or supply store’’ (Konrad,
2017). In short, FBN seeks to ‘‘disrupt’’—that is, sup-
plant—the informal, embodied, local social institutions
of US farming where farmers meet and talk shop, with
a crowd-sourced data platform that offers ‘‘the com-
bined intelligence of millions of acres’’ and ‘‘radical
price transparency’’ (FBN, 2019).

This move to equate data with a kind of straightfor-
ward, democratic functionality is a salient facet of
emergent algorithmic rhetoric, embodied in the market-
ing claims throughout the agricultural supply chain and
in established elites of digital commerce like Amazon
and Google alike. Yet I agree with Striphas (2016)
when he argues that what is at stake in this phenom-
enon is the ‘‘privatization of process’’ (406). Contrary
to the revolutionary, democratic language that shrouds
them, what elite companies like FBN, Deere, and
Cargill, let alone Amazon, are in fact engaged in is an
effort to commodify and privatize public spaces, social
activities, and cultural phenomena like coffee shop talk
by apprehending them within the quantifiable logics of
digital capitalism at the core of algorithmic rhetoric, all
the while claiming the opposite. Furthermore, if as a
farmer both the software running your seeder and the
very seeds you plant are subject to IP protections, you
no longer even meaningfully ‘‘own’’ the equipment you
buy. Instead, you essentially license critical parts, which
you thus cannot repair yourself (Sykuta, 2016). Yet in
order to actually receive the advantages and value pro-
mised by precision equipment, you must simultan-
eously share exquisitely specific data about your farm
operations—data your labor generated—for free. In
such a situation it is difficult to take the rhetoric of
crowd wisdom and algorithmic democracy seriously.
As one otherwise enthusiastic adopter of PA technol-
ogy in the North Country of New York State asked me,
‘‘why doesn’t data have value? Why should we be
giving away this data to companies? We’re spending
millions of dollars, and they’re seeing everything
we’re doing and learning from it in real time.’’

In PA, acting, thinking, and doing are themselves
subject to commodification via datafication. These phe-
nomena can be translated from the indiscrete realities
into quantifiable, tradable functions. They become
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inputs to be bought, and increasingly, to be license-
d—rented rather than owned. This is not so much a
revolution of ideals or ontic kind, but an expansion
of market development and industrialization, ideolo-
gies of growth and structural transformation that
demand life and food be industrialized in order to be
incorporated. Digitization provides the opportunity to
capture, access, manage, and exchange what was
inaccessible before; not unlike the ways climate
modeling software now permits futures trading on
environmental catastrophes (Johnson, 2012).

How does viewing PA this way change or challenge
its popular, revolutionary ideation? Consider the com-
bine. These machines, which developed in form and
function beginning in the 1830s, were so named for
integrating several different harvesting activities
(reaping, threshing, and winnowing) into a single
machine. Transforming those ancient and variable
practices into a series of mechanical steps is exactly
akin to the algorithmic process of rationalizing and
mechanizing textile production. If the farm could not
at first be brought to the factory, the factory would be
brought to the farm: the combine is itself a kind of
roving, metal algorithm. If older combines were
simple, mobile factories, today’s precision-equipped
combines extend the domain of algorithmic processes
to a number of additional tasks, including the quanti-
fication of traits (starch, protein, moisture contents of
seeds, etc.) and telemetric data (fuel efficiency, route
efficiency, time driven, etc.). Modern combines are fac-
tories producing both data and crops in increasingly
exquisite detail. This detail, and those data, is/are
useful first and foremost for the production of com-
modities as such, and so to the production of capital.

This is how a combine ‘‘tell[s] the truth.’’ It tells the
truth in reliably generating quanta relevant to the func-
tional relations of commodities and capital that organize
the entire system of industrial, ‘‘conventional’’ agricul-
ture. It would be absurd to say that, in expressing the
starch or moisture content of a kernel of maize, the com-
bine is telling the truth of that maize. It tells the truth
insofar as it supposedly is not engaged in deliberative,
contextual, positioned judgments. It tells the truth inso-
far as it accurately generates information relevant to the
conversion of corn into a commodity-logic of function,
of relational values: that is, into a thing legible to capital.

In a system economically organized by capitalist
rationality, the truths that digital sensors and algorith-
mic processing speak are the expression of a normative
function: the rational logic of capitalist production.
This logic has taken on a newly mystical dimension
with the introduction of machine learning, Big Data,
and algorithmic epistemology, which have in turn led to
a contemporary use of algorithm as a cipher for the
occult-yet-objective, truth-generating powers of what

are more accurately understood as John Deere,
Nestle, or DuPont’s efforts to preserve their industry
by monetizing behavior.

Consequences of precision convention

PA is an intensification of conventional agriculture pre-
sented as a radical break. The realities of its use in
many instances contradict this efficiency-generating,
environment-sparing public image. An ‘‘unrelenting
abundance’’ (CoBank Knowledge Exchange, 2017) of
agricultural overproduction, crashing prices and driving
farm consolidation, contradicts the major rhetorical
framework of PA, as answering the call for ‘‘100%
more’’ food by 2050 (Grose, 2015). To be meaningful,
such calls must be placed within the broader context of
current production and distribution systems, which
waste up to 40% of the food produced in the United
States (De Schutter, 2015). Issues of hunger, nutrition,
and culture normally corralled under the mantle of
‘‘food security’’ are not issues of simple scarcity; they
are in large part socially, politically, and culturally
shaped issues of distribution—both of food itself, and
of power more generally (Graddy-Lovelace, 2017;
Gunders, 2012). Questions about production and
waste are also questions of cultural norms, particularly
those which tether authenticity, masculinity, vitality,
and wealth to the slaughter and consumption of other
species. Most cultivated land in the US is dedicated to
the manufacture of singular commodity crops, the vast
majority of which are not grown for direct human con-
sumption. Monocrop agriculture is in fact tied to the
production of livestock, primarily cattle; millions more
acres are invested in the production of biofuels (Merrill
and Leatherby, 2018). As agro-ecology and food-sover-
eignty movements have highlighted, conventional cap-
italist agriculture has at best a tenuous relationship to
the dynamic needs and desires of people and other
biotic communities around the world (Frison, 2016).

PA’s environmental benefits are also presented in
terms of greater monocropping intensity—more food
can be harvested from the same land while sparing
inputs. Yet more granular analysis of these issues sug-
gests no easy answers. There is no final verdict, for
instance, on whether ‘‘land sharing’’—attempts to
make farmland more hospitable to local fauna by
adapting it more holistically to the surrounding envir-
onment, and so reducing the harm of further expan-
sion—or ‘‘land sparing’’—attempts to maintain or
reduce cultivated areas overall by pursuing yield
intensification—is clearly superior (Balmford et al.,
2012: 2716–2717; Ericksen et al., 2009). A recent and
deeply worrying review of over 70 conservation studies
has shown that 40% of insect species on Earth are
experiencing ‘‘dramatic rates of decline’’ (Sánchez-
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Bayoa and Wyckhuys, 2019: 9). The authors explicitly
identify conventional agriculture, and the shift from
low-input to ‘‘intensive, industrial scale production
brought about by the Green Revolution’’ as a core
driver of these trends, where planting fencerow-to-fen-
cerow with genetically uniform monocultures, using
synthetic chemical inputs, eliminates not only forests
but individual trees and hedgerows, effectively creating
engineered deserts, hostile to anything but single, com-
modified species (19). Birds, fish, mammals, and reptiles
have fared equally poorly, with 60% of their total
populations having declined since 1970, industrialized
farming again a major driver (World Wildlife
Federation, 2018).

Consider the following: in July 2018, I was, invited
to interview a Western New York farmer on his use of
PA as he harvested a neighbor’s wheat. While we drove,
his combine would pass over dells and furrows of deep
green. As I watched these occasional congresses of
weeds appear on the combine’s digital display, recent
environmentally oriented arguments presented at an
international PA conference were brought to mind:
that datafication could identify unprofitable areas to
take out of rotation, helping reduce harmful agricul-
tural effects. I asked my companion what he thought
about these patches:

Q: When . . . you’ve got more topographical issues like

that, would you consider rearranging your field so you

leave some areas fallow?

A: Oh, absolutely. If there’s no way to make it econom-

ically viable, you’re better off to not work that.

Absolutely. And that’s where the precision [technolo-

gies]—they’ll just put a dollar amount to that

spot . . .Now the farmer in me might have to, I see

that spot right there, and what can I do to make that

grow? And I’m going to figure it out. <laughs>.

Usually there’s an issue that can be fixed. And so I’ll

just use that as an example. There’s a drainage issue

right there. I know there’s a drainage issue right there.

And how can I fix that? Well, we put drainage tile in,

and we can fix that spot . . . I could make that spot more

consistent with the rest of the field.

Q: So . . . the equipment helps you to identify those

areas to say ‘okay, well, it might make more sense for

us to spend the money to put the tile in to make that

more viable for us?’

A: Yes, versus leaving it fallow.

This exchange exactly reproduced the arc of conversa-
tions at the conference panels. While everyone initially
agreed precision environmentalism was a nice thought,
and that NDVI images or yield and profitability maps
helped identify ‘problem’ areas, many were quick to ask
why a farmer wouldn’t rather simply treat those areas,

making them profitable rather than removing them
from rotation. One would lose money not harvesting
such areas—something the New York farmer was quick
to point out as well.

Who can blame him? In a monocropping system, it
makes far more economic sense to keep an entire field
uniform than to drive a huge combine harvester around
several four-foot-square patches. The problem is not so
much that an individual farmer fails to be environmen-
talist enough; the problem is with a conventional system
whose underlying logic inevitably makes a market-based
choice more viable than an ecological one.

There are of course many other problems raised by
the prospect of maintaining the conventional, capitalist
food system, from digitization as a driver of consolida-
tion and the stresses this process places on rural com-
munities, to its contribution to waxing power of
grocery store chains and food manufacturers over the
labor and environmental conditions farmers and farm
workers work within. Yet it would be folly to suggest
that this system, on its own terms, has not been suc-
cessful in a very strict sense. The increase in yields, and
so overall availability of food represented by the
hybridization of corn and later ‘‘Green Revolution’’
technologies cannot be denied. But these increases are
predicated on a process of externalization that can no
longer be supported; the historically limited ‘‘cheap-
ness’’ of labor, environment, etc. have been all but
burned through (Moore, 2017). As the UN itself has
recently recognized, capitalism as such simply cannot
continue (Järvensivu et al., 2018). Neither, therefore,
can conventional agriculture, precise or not. The ques-
tion is, what will replace it?

While it is decidedly outside the scope of this paper to
answer that question in full, within the more limited
scope of agriculture, I see promise for rethinking the
use of PA technology along the lines of what Kate
Crawford has called a design ideal of ‘‘agonistic plural-
ism’’ (2016). Unlike the functionalist rationality of algo-
rithmic systems which enact universalist, black-boxed
logics of productivity towards control over the produc-
tion of surplus value, agonistic perspectives are premised
upon an ‘‘ongoing struggle between different groups and
structures—recognizing that complex, shifting negoti-
ations are occurring between people, algorithms, and
institutions, always acting in relation to each other’’
(2016: 82–83). PA shifts the scale of attention and inter-
vention from field-level to sub-field control, but it does
not question the monocrop, factory-field itself, the literal
and figurative ground it is built upon. Yet there is no
inherent reason that sensor and processing technologies,
which permit more finely grained interventions in
food production, could not be designed to facilitate
greater ecological complexity without compromising
productivity. If, at present, machine learning is designed
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around a commodity logic towards more efficient main-
tenance of the conditions of production, i.e. through
neural networks designed to automatically recognize
and eliminate ‘‘weeds’’ and other pests, agonism in this
context could mean finding ways to allow for greater
floral and faunal complexity around fields, using
robotics, automation, and algorithmic machine learning
to negotiate the conflicts in a multi-species ecological
milieu (cf. Tsing, 2015). The tools of military-industrial
‘‘precision,’’ that is, can and should be rethought to
encourage, not eliminate, the thronging complexity of
being, and so help shape our techne in better accord to
both the real needs of people, and other forms of life.

Conclusion

This article has outlined an epistemological relationship
between industrialization and information in terms of
algorithmic rationality, which it has argued expresses
the normative grammar of modern capitalist production,
in order to advance a critique of PA discourse. This
discourse, which frames PA as revolutionary, belies the
more mundane reality of PA as heir to a now centuries-
old historical process. PA is better understood as an
intensification and evolution of dominant, normative
modes of relation structured by capitalist organization
of production and liberal political-economic philosophy.
This is not to suggest that the move to sub-field scales of
management, the reorganization of the industry and
practice of conventional farming along more overtly
informatic lines, or the large-scale spread of information
technologies into previously unknown regions or envir-
onments do not represent real changes with their own
ramifications. It is rather to contend that invocations of
PA and its dazzling algorithmic patina as revolutionary
have the rhetorical effect of normalizing the intensive,
destructive industrial production of agricultural com-
modities that is in large part responsible for the very
social and environmental problems it is proposed to
solve in the first place.

If information is to be the new substrate of farming,
then it seems we are faced with a choice. On one hand,
to use algorithmic control to preserve an imperious,
masculine order of factory farming with a new intensity
of control that the mergers that opened this essay rep-
resent, where behemoth corporations fight over grow-
ing shares in worldwide control of land, labor, and food
and governments exert digitally facilitated social con-
trol in the name of sustainability and ecosystemic sov-
ereignty. On the other, to take the fineness, the kind of
granularity of control and adaptability PA technologies
might offer as a chance to do something genuinely revo-
lutionary: to try and build new relationships to food,
land, other species, and one another. As long as the
conversation about PA speaks of a revolution that

belies the convention at play, it will continue to offer
little more than change for the same.
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Notes

1. Precision agriculture also known as ‘‘smart farming’’ or

‘‘digital agriculture.’’ I use precision agriculture or precision
farming throughout this article because they are more

inclusive, specific terms for this phenomenon. ‘‘Smart’’ is
ill defined and semiotically gravid; ‘‘digital’’ tends to sig-
nify electronic, computational technologies. Precision agri-

culture is the more common term among farmers and
those in the Ag industry.

2. One exception is Nick Murray’s outstanding article in
Viewpoint Magazine on the relationship between country
music, farmer identity, corporate control of agriculture,

and the rise of precision farming (Murray, 2018).
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