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Human culture evolves, but it is not always clear which aspects 
of culture have been shaped by selection on benefits to sur-
vival and reproduction. Cuisine is a notable aspect of cul-

tural variation that is flexible in response to both dietary need and 
available ingredients, and diet has an obvious impact on survival 
and success. We might therefore expect cuisine to have been shaped 
by selection, as appropriate use of foods (whether consciously or 
unconsciously) could increase the chances of people surviving and 
thriving. Since optimal diet might vary between environments, such 
a mechanism could generate variation in cuisine between cultures. 
The use of spices provides a key case study in ‘Darwinian gastron-
omy’1, or the adaptive benefit of culturally inherited food prefer-
ences. Rather than providing direct nutritional benefits, spices may 
act as antimicrobial agents, reducing the risk of foodborne illness. It 
has been suggested that cuisines from hot regions use more spices to 
counteract the greater risk of food spoilage1,2. One of the key pieces 
of evidence supporting this hypothesis is a positive correlation 
between spice use and average temperature1 (Fig. 1).

The search for evolutionary explanations of human cultural 
diversity is as old as evolutionary theory, but it has always been 
problematic3: relatedness between cultures can generate patterns of 
association that can be misinterpreted as a functional relationship 
when they may be driven simply by shared inheritance of suites of 
causally unconnected traits. Shared features due to inheritance vio-
late the assumptions of statistical tests because related cultures tend 
to be similar in many respects, causing many aspects of culture to 
be correlated even if they are not directly connected. This com-
mon statistical problem, known as Galton’s problem or phylogenetic 
non-independence4,5, was acknowledged in previous studies of adap-
tive cuisine, but the authors lacked suitable means of correction1,2.

In this Article, we make three important advances in testing 
the adaptive cuisine hypothesis for spice use. First, we assemble 
a global dataset of recipe data for cuisines recorded for a wide 
range of national, sub-national and super-national areas (Table 1),  
along with environmental and socioeconomic data associated with 
each cuisine. Second, we use analytical techniques developed in  

macroevolutionary biology to account for statistical non- 
independence due to shared ancestry and proximity6,7. Third, we 
use statistical analyses to explicitly compare the explanatory power 
of different hypotheses for higher spice use, considering infection 
risk mitigation, shared history, proximity, socioeconomic factors, 
cultural diversity and botanical and agricultural diversity. Our 
approach consists of a series of tests, each designed to probe a pos-
sible explanation for the observed relationship between spice use, 
temperature and infection risk.

Results
The goal of this study is to investigate whether the geographic pat-
tern of use of spices is consistent with adaptive evolution of cuisine 
in response to variation in risk of foodborne infection. This hypoth-
esis has been supported by a correlation between the average num-
ber of spices per recipe and temperature1,2,8, and between the use of 
spices and historical disease prevalence9. However, previous studies 
did not account for similarities in cuisines due to spatial proximity 
(because nearby cultures are subject to similar environmental con-
ditions) or relatedness (because related cultures tend to have similar 
cuisines as well as similar environments), nor did they evaluate the 
degree to which the significant correlations reported were driven 
by covariation between environmental and socioeconomic factors. 
We used a series of tests to explicitly model the effect of relatedness, 
proximity and covariation on the association between spice and 
infection risk. Each test asks whether spice use is related to a partic-
ular environmental or socioeconomic variable, and if it is, whether 
that relationship might be explained by covariation with another 
relevant variable. In this way, we evaluate the explanatory power of 
each variable in a stepwise manner, rather than including all pos-
sible variables in a single multivariate analysis. Below and in Table 2,  
we summarize our analyses step by step, with all tests described in 
Supplementary Data 1. All results explicitly demonstrated model 
autocorrelation due to spatial proximity and relatedness.

Spice use is correlated with average temperature (Fig. 1). However, 
we demonstrate that this relationship is largely an indirect result of 
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closely related and nearby cultures experiencing similar tempera-
tures and also having similar patterns of spice use, rather than a 
direct connection between spice and temperature. In our dataset 
(45 cuisines, variables estimated directly from available recipe data; 
“Total” in Table 1), autocorrelation due to proximity and relatedness 
of cuisines accounts for 53% of variation in mean spice use. If this 
autocorrelation is taken into account, there is no significant relation-
ship between mean spice use per recipe and temperature (regression 
coefficient (β) = 0.03, t43 = 0.20, p = 0.844). We found that the data 
supported the null model (no association between temperature and 
spice) over the alternative model (spice is related to temperature) 
with a Bayes factor for the null result (BFnull) of 5.9. Similarly, spice use 

is correlated with historical pathogen load (Supplementary Data 1),  
but the association is not supported after accounting for autocor-
relation, given the marginal p value and low Bayes factor (β = 0.35, 
t43 = 1.99, p = 0.053, BFnull = 2.6). The evidence for lack of direct asso-
ciations between spice, temperature and historical pathogen load is 
even stronger in the combined dataset (70 cuisines, including data2 
from Billing and Sherman; “Combined” in Table 1; Supplementary 
Data 1) and is not due to low statistical power. We demonstrate that 
the analysis on both datasets provided sufficient power (>0.8) to 
detect any effect on mean spice use with β ≥ 0.15 (that is, equivalent 
to one s.d. change in the independent variable leading to more than 
0.15× s.d. in mean spice use: Supplementary Fig. 1).
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Fig. 1 | Spice and temperature. Mean spice use per recipe is correlated with average temperature, but this is driven largely by geographic clustering. 
Neighbouring cuisines tend to have both similar spice use and similar temperatures. When spatial and phylogenetic non-independence is taken into 
account, there is no significant association between temperature and spice use in the combined dataset (t68 = 0.45, P = 0.658), supported by a Bayes 
factor of 6.6, suggesting that temperature does not predict spice use above and beyond association through relatedness and proximity of cultures. DACH 
refers to Austria, Germany and Switzerland. Details of the cuisines are provided in the Supplementary Information.
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However, for the adaptive cuisine hypothesis, temperature is a 
proxy measure for the proposed causal factor, which is risk of infec-
tion from contaminated food2,9,10 (Fig. 2). Mean spice use is associ-
ated with incidence of foodborne illness, averaged at regional level11 
(β = 0.43, t43 = 2.78, p = 0.008; BFnull = 3.7), even when autocorrela-
tion is accounted for. However, the evidence for the relationship 
between spice use and foodborne illness is substantially weaker for 
the combined dataset of 70 cuisines (β = 0.23, t68 = 2.27, p = 0.027, 
BF = 0.9). Given that most of the relationships between spice use 
and other factors are weaker for the combined data, we report sta-
tistics for our data (Table 1); statistics for the same tests conducted 
on the combined dataset (our data plus data from ref. 2) are avail-
able in the Supplementary Information and in Supplementary 
Data 1. Similarly, we report tests for mean spice per recipe, but we 
include results for median spice per recipe in the Supplementary 
Information. All results reported here explicitly model autocorrela-
tion due to relatedness and proximity.

Can we interpret the association between foodborne illness and 
average number of spices per recipe as evidence for the adaptive 
cuisine hypothesis that more spices are added for their antimicro-
bial properties in areas where risks of foodborne infection are great-
est? Mean spice also correlates with incidence of diarrhoea from 
all causes in young children (β = 0.41, t40 = 2.20, p = 0.034) and the 
evidence for this correlation (BF = 1.4) is stronger than for food-
borne illness (BF = 0.9). However, this variable measures a specific 
health outcome—reported diarrhoea for children under the age 
of 23 months—regardless of the cause, which may include food-
borne infection, environmental contamination or contact-based 
infections12. Similarly, spice use has been reported to be associ-
ated with historical pathogen load9, which includes diseases trans-
mitted by vectors, contact and environment rather than through 
food (although we find little evidence of a significant relationship 
between spice and historical pathogen load in this analysis). This 
points to a potential problem when seeking correlations between 
cultural variables (such as spice use), health outcomes (such as 
foodborne illness) and environment (such as temperature or patho-
gen prevalence). Poor health outcomes tend to correlate together on 
a global scale, such that areas with a high risk of foodborne infection 
also have a high risk of infection from vectors, contact and environ-
ment (Fig. 2).

In fact, other indicators of poor health outcomes provide a better 
prediction of spice use than foodborne illness or other infectious 
diseases. Life expectancy, which reflects poor health outcomes not 
only from infectious disease but also non-infectious diseases such as 
lung cancer, poverty-related illness such as malnutrition, and trau-
matic deaths including war and accidents, is associated with spice use 
(β = −0.31, t43 = −2.90, p = 0.006, BF = 1.0). Poor health outcomes  

that are associated with low socioeconomic development but not 
connected to infection risk are also associated with patterns of spice 
use. For example, road traffic deaths per capita predict mean spice 
use significantly better than foodborne illness does at the country 
level (BF = 3.6) and predict mean spice use as well as foodborne 
illness does in the combined dataset (BF = 1.0). The association 
between spice and a range of poor health outcomes suggests that the 
relationship might not be entirely due to risk of infection.

Patterns of poor health outcomes have strong geographic and 
socioeconomic patterns13,14. Given that cultural factors can also 
show marked geographic and socioeconomic patterns, this raises 
the possibility that many different measures of poor health out-
come, including foodborne disease and childhood diarrhoea, will 
be indirectly associated with patterns in cultural variables, includ-
ing aspects of cuisine4. Indicators of socioeconomic development 
provide a link between many different aspects of human culture, 
population and health. For example, gross domestic product per 
capita (GDPpc), a general indicator of relative poverty, predicts 
mean spice use as well as foodborne illness does (BF = 1.8; Fig. 3). 
There is some support for GDPpc having greater predictive power 
for variation in mean spice use than foodborne infection: adding 
GDPpc to a model with foodborne illness significantly increases 
model fit to mean spice use for our dataset (LR = 4.33, p = 0.037; 
BF = 1.7). By contrast, adding foodborne illness does not increase 
the fit of a model of GDPpc predicting mean spice use (LR = 3.31, 
p = 0.069; BF = 1.0). This result is not due to the coarse resolution of 
the foodborne illness variable measured at regional level, because 
after reducing the resolution of GDPpc to regional level, GDPpc is 
still a significantly better predictor of mean spice use than food-
borne illness (BF = 2.7) and adding foodborne illness does not sig-
nificantly increase the fit of a model of GDPpc predicting mean 
spice use (LR = 0.32, p = 0.569; BF = 0.4). These results suggest that 
foodborne infection has little additional explanatory power for 
spice use above its association with poverty in general.

Why is spice use associated with poor health outcomes and pov-
erty? One possible explanation is through poor diet or low food 
availability. Prevalence of malnutrition (as reflected in rates of child 
stunting) is significantly associated with mean spice use (β = 0.40, 
t43 = 2.86, p = 0.007, BF = 3.3) and, unlike foodborne illness, adding 
GDPpc to a model with malnutrition does not significantly increase 
model fit to mean spice use (LR = 1.42, p = 0.20; BF = 0.7). Another 
possible explanation is that places where spices grow naturally were 
the target of European colonial occupation and exploitation. This 
pattern of aggressive resource capitalisation in the ‘Spice Islands’ 
by predominantly Dutch, English, Spanish and Portuguese trad-
ers resulted in an increase in wealth in the European countries but 
may have come at the expense of wealth accumulation in the source 
countries for spices (represented in our dataset by Indonesia and 
Malaysia). However, the association between spice use and GDPpc 
is still significant after removing cuisines associated with the spice 
trade, both the colonizers and the colonized (β = −0.39, t41 = −4.13, 
p < 0.001, BF = 11.8), so the pattern of colonial exploitation associa-
tion with the spice trade cannot provide a general explanation for 
the negative relationship between GDP and spice use. Furthermore, 
the relationship between spice use and GDPpc holds for a dataset 
consisting only of cuisines from areas that were never under colo-
nial rule (β = −0.39, t31 = −3.07, p = 0.004, BF = 5.7), so patterns of 
colonization seem unlikely to provide a general explanation of the 
association between spice use and poverty.

Whatever its cause, the association between spice use and GDPpc 
generates the potential for many indirect associations with other 
cultural and environmental variables. GDP is a broad-brush mea-
sure of economic development and it has strong geographic pattern-
ing, thus GDP is expected to correlate with other variables that show 
similar spatial patterns, even in the absence of any direct causal 
connection. For example, GDP has a latitudinal gradient15 (Fig. 2, 

Table 1 | Recipe datasets included in this study, including the 
original data used in a previous study of adaptive cuisine2 and 
data from four published recipe datasets3–5

Dataset Cuisines Recipes Spices Source

1 B&S 38 4,578 41 ref. 2

2 Global 10 18,868 62 ref. 37

3 China 19 8,498 54 ref. 35

4 India 8 2,761 45 ref. 34

5 Japan 8 825 19 ref. 8

6 Total 45 31,108 93 refs. 2–5

7 Combined 70 33,750 93 refs. 1–5

“Total” refers to the combination of datasets 2, 3, 4, and 5. The “combined” dataset consists of 
unique cuisines in datasets 1–5 (using data from 2–5 for any cuisine present in both B&S and the 
other datasets; numbering is according to Table 1). Further details are provided in the Methods and 
Supplementary Information.
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link 4), and so GDP will tend to correlate with other variables that 
show a latitudinal gradient, including a range of health outcomes 
such as hip fractures16,17, blood infections18, breast cancer19, multiple 
sclerosis20, traffic accidents21 and risk of infectious disease22 (link 5). 
The latitudinal gradient in infection risk offers a possible explana-
tion for the association between spice and foodborne illness. After 
accounting for latitude, we find that foodborne illness no longer has 
significant association with spice use: adding foodborne illness to 
a model with latitude does not significantly increase model fit to 
mean spice use (LR = 3.80, p = 0.051; BF = 1.3). By contrast, adding 
GDPpc significantly increases the fit of a model of foodborne ill-
ness and latitude predicting mean spice use (LR = 4.30, p = 0.038; 
BF = 1.5), suggesting that the extra predictive power of poverty on 
mean spice above and beyond risk of foodborne infection is not due 
to covariation of GDP with latitude.

Socioeconomic factors such as GDP correlate with aspects of 
human population that also show strong spatial patterns, such as 
population density. Areas of high population density tend to have 
lower GDP15 and higher risk of pathogen infection23 (Fig. 2, links 
7 and 8). Population density also varies with climatic variables4,15 
and biodiversity24 (links 9 and 10), creating potential indirect links 
between human cultural variation and risk of infection, because the 
regions that support higher population densities also have greater 
cultural diversity, as measured by the number of autochthonous lan-
guages in an area7. If areas with higher cultural diversity use more 
spices in their cooking (link 11) due to exposure to a greater diver-
sity of local cuisines, then this could drive an indirect link between 
spices and infection risk via population density (link 8). Since high 
population density regions also tend to have lower GDP15 (link 7), 
population density and cultural diversity could also create a potential  

Table 2 | Summary of main results corresponding to links in Fig. 2

Link Response Predictors t d.f. LR BF

1 Mean spice use Temperature 0.20 43 0.2

3 Mean spice use Foodborne illness 2.78 43 3.7

Mean spice use Childhood diarrhoea 2.20 40 1.4

Mean spice use Historical pathogen 1.99 43 0.4

Spice in meat vs non-meat dishes Foodborne illness −1.51 40 0.7

Alcohol and vinegar Foodborne illness −1.23 43 0.4

Chilli Foodborne illness −0.94 43 0.2

Mean spice use Life expectancy −2.90 43 1.0

Mean spice use Road traffic deaths 1.26 33 0.3

Mean spice use Malnutrition 2.86 43 3.3

Mean spice use GDPpc −3.50 43 6.6

Mean spice use Foodborne illness 3.31 1.0

+ GDPpc 4.33 1.7

6 Mean spice use Latitude −1.76 43 0.8

Mean spice use Foodborne illness 3.80 1.3

+ Latitude 0.10 0.3

11 Mean spice use Population density −1.59 43 0.3

Mean spice use Cuisine area 1.35 43 0.2

Mean spice use Language diversity 0.80 43 0.2

12 Mean ingredients Population density −1.46 43 0.2

Mean ingredients Cuisine area 2.03 43 0.5

Mean ingredients Language diversity −0.47 43 0.1

13 Mean spice use Vertebrate diversity 0.17 43 0.1

Mean spice use Plant diversity −0.11 43 0.2

Mean spice use Crop diversity −0.53 43 0.2

Mean spice use Spice diversity −0.31 43 0.2

15 Mean ingredients Vertebrate diversity −1.16 43 0.2

Mean ingredients Plant diversity −0.83 43 0.2

Mean ingredients Crop diversity −1.04 43 0.2

Mean ingredients Spice diversity 1.01 43 0.2

16 Mean spice use Mean ingredients 7.86 43 >107

For each link, a regression is first done for each predictor within each category of variables, and the t statistic, degrees of freedom (d.f.) and Bayes factor against the null hypothesis (BF) are reported.  
A predictor has significant effect on the response variable if its t statistic is significant at a 0.05 significance level (in bold) and its BF value is larger than 1 (in bold). If any predictor has significant effect, 
then a likelihood ratio (LR) test is performed to test if the predictor in the indirect link gives significant predictive power to mean spice use above and beyond foodborne illness. This is done by comparing 
the likelihood of a model with foodborne illness and the significant predictor in the indirect link and the likelihood of a model with only foodborne illness. Similarly, we also test whether foodborne illness 
gives significant predictive power to mean spice use above and beyond the predictor in the indirect link. This is done by comparing the likelihood of a model with foodborne illness and the predictor and 
the likelihood of a model with only the predictor in the indirect link. Significant results are indicated by LR and BF values in bold: all reported analyses account for non-independence due to proximity and 
relatedness (Methods). GDPpc, gross domestic product per capita.
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indirect link to health outcomes and infection risk. However, 
we find that cuisine areas that contain more language groups do 
not have significantly higher mean spice use (β = 0.09, t43 = 0.80, 
p = 0.427, BFnull = 5.9), nor is mean spice use significantly associated 
with population density (β = 0.09, t43 = −1.59, p = 0.118, BFnull = 4.0) 
or cuisine area (β = 0.09, t43 = 1.35, p = 0.184, BFnull = 5.4). The mean 
number of ingredients per recipe and the total number of spices 
included in a regional cuisine are also not significantly related to 
language diversity, population density or area (link 12; Table 2 and 
Supplementary Data 1).

Spatial patterns of biodiversity provide an alternative indirect 
link between spice use and infection risk. Higher biodiversity might 
increase spice use due to the greater diversity of plants available for 
inclusion in recipes (Fig. 2, link 13). Plant biodiversity shows similar 
global patterns to bird and mammal diversity, largely due to their 
covariation with climate25 (link 10), and diversity of vertebrate hosts 
increases the risk of infection through zoonotic events and by act-
ing as a reservoir for human diseases26 (link 14). Biodiversity could 
also drive an indirect association between spice use and poverty, 
because GDP is correlated with many aspects of biodiversity27,28, 
including pathogen diversity29 and infectious disease30. However, 
we find no evidence of a significant association between mean spice 
use and the diversity of plant species or crop plants in the cuisine 
area (Table 2); nor do we find evidence of association between 
mean spice per recipe and the number of spices growing within the 
cuisine area (link 13: β=−0.04, t43 = −0.31, p = 0.757, BFnull = 6.6). 
Mean spice use is not significantly associated with vertebrate diver-
sity (Table 2). Biodiversity could indirectly influence spice use via 

overall recipe complexity, if biodiverse regions have a greater range 
of available ingredients. While recipes with more ingredients tend 
to include more spices (link 16: β=0.83, t43 = 7.86, p < 0.001), there 
is no evidence of a connection between any measures of biodiver-
sity and the number of ingredients per recipe (Table 2, link 15), 
nor is there a link with the total number of spices used in a cuisine 
(Supplementary Data 1). Although biodiversity is correlated with 
climatic variation, we find that none of the climatic variables that 
are known to have significant association with biodiversity and 
cultural diversity—including temperature seasonality, average pre-
cipitation, precipitation seasonality and mean growing season7—are 
significantly associated with mean spice use, mean number of ingre-
dients per recipe or the total number of spices included in a cuisine 
(Fig. 2, link 1 and Supplementary Data 1).

When we trace the possible links in Fig. 2, taking only those 
paths that have significant support from these data or from previous 
studies, the only solid connections between spice and infection risk 
run via general indicators of health and poverty. Of these, indicators 
of poverty and poor health outcome, including GDP and road traf-
fic deaths, provide equally strong (and, in some datasets, stronger) 
explanatory power for variation in spice use than indicators of risk 
of infection, including foodborne infection, early childhood diar-
rhoea and historical disease prevalence. However, the covariation 
between socioeconomic and cultural parameters makes it difficult 
to ascertain the causes of the patterns with any great certainty. We 
can never include all relevant cultural, socioeconomic or environ-
mental variables, so we cannot be certain that observed correla-
tions between variables are not an indirect result of covariation 
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with an unmeasured quantity. Even though road traffic deaths are 
often a better predictor of spice use than infectious disease, we do 
not expect there to be a direct causal relationship between traffic 
accidents and spice use. Instead, it seems likely that we could find 
additional socioeconomic or cultural variables that provide even 
stronger correlation with spice use, but if we attempted to include 
all relevant cultural and socioeconomic parameters, the number 
of variables would eventually outnumber the number of cuisines, 
increasing the risk of spurious correlations.

As a way of cutting through the jungle of entangled variables 
that covary with culture, history and geography, we can test three 
additional predictions of the adaptive cuisine hypothesis that are at 
least potentially independent of the association between spice use 
and poverty: (1) higher spice use should be associated with foods 

with greater risk of foodborne illness, such as meat-based dishes8,10;  
(2) spices that show greater antimicrobial effects that survive cook-
ing, such as chilli, should show the strongest relationship with 
infection risk2,10; and (3) greater infection risk should also promote 
inclusion of other antimicrobial ingredients in cuisines, such as vin-
egar and alcohol8.

Mean spice use in recipes containing meat or seafood is sig-
nificantly higher than in recipes with no meat-based ingredients 
(t40 = 6.51, p < 0.001). However, vegetarian cuisines that contain no 
meat recipes do not have lower average spice levels than cuisines 
containing meat (t44 = −0.68, p = 0.502), and areas with higher inci-
dence of foodborne disease do not have a larger difference in spice 
use between meat and non-meat recipes (t39 = −1.51, p = 0.138). 
The higher spice use in meat recipes may reflect greater recipe  
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complexity, since meat recipes tend to have more ingredients 
(t40 = 4.97, p < 0.001), and number of ingredients correlates 
with number of spices (Fig. 2, link 16). However, the number of 
ingredients does not fully explain the difference in mean spices 
in meat-containing recipes compared with non-meat recipes 
(LR = 4.65, p < 0.031; BF = 10.2).

Using chillies as a test case, we find no evidence for the prediction 
that highly antimicrobial spices should show stronger association 
with infection risk. Incidence of foodborne illness is not significantly 
associated either with inclusion of all Capsicum-derived ingredi-
ents (t43 = −0.52, p = 0.604) or hot chillies (t43 = −0.94, p = 0.353). 
Similarly, inclusion of vinegar is not significantly associated with 
prevalence of foodborne illness (t43 = 1.31, p = 0.196). Alcohol is 
also not significantly associated with foodborne illness, whether we 
analyse all alcoholic ingredients (t43 = −0.48, p = 0.633) or alcohol  

excluding beer (t43 = −0.50, p = 0.619). In case the regional inci-
dence of foodborne illness is not fine-grained enough to pick up 
these relationships, we also tested the three predictions using 
cuisine-level socioeconomic variables that show a correlation with 
risk of foodborne infection, but we get the same results: difference 
in spice use between meat and non-meat recipes, inclusion of chilli 
or vinegar, or alcohol use are not significantly associated with life 
expectancy (Supplementary Data 1).

Discussion
In summary, we find that, contrary to the predictions of the adaptive 
cuisine hypothesis, patterns of spice use are better predicted using 
socioeconomic variables that reflect global patterns of poverty and 
health outcomes than by temperature or risk of infection. There is 
also no evidence that the use of other ingredients with antimicrobial 
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Table 3 | List of spices counted in this study

Spice B&S China india Japan Global Notes

Ajwain − − + − − Carom, fruit of Trachyspermum ammi

Allspice + + − − + Dried berries of Pimenta dioica

Amaranth − + − − + Leaves or seeds of Amaranthus

Amchoor − − + − − Dried unripe mango, Mangifera

Anise + + + − + Aniseed, Pimpinella anisum

Anjelica − − − − + Leaves or roots of Angelica archangelica

Artemisia − + − − − Wormwood, Artemisia annua

Asafoetida − − + − − Hing powder, dried gum of Ferula

Basil + − + − + Leaves of Ocimum

Bay + + + − + Leaves of Laurus nobilis

Camphor − + + − − Substance from Cinnamomum camphora

Capers + − − − + Pickled fruit or flowers of Capparis spinosa

Capsicum + + + − − Bell peppers, Capsicum annum or Capsicum grossum

Caraway + − + − + Fruits of Carum carvi

Cardamom + + + − + Seeds of Elleteria or Amomum

Celery + + − − + Seeds, stalks or leaves of Apium graveolens

Chilli + + + + + Small spicy Capsicum, including cayenne

Chamomile − − − − + Flower of Chamaemelum nobile

Chervil − − − − + Leaves of Anthriscus cerefolium

Chrysantheum − + − + − Flower of Chrysantheum sp.

Cinnamon + + + − + Bark of Cinnamomum

Citrus + + + + + All citrus including juice, peel, oil or extract

Cloves + + + − + Flowers of Syzygium aromaticum

Coriander + + + − + Leaves, seeds or roots of Coriandrum sativum

Cumin + + + − + Seeds of Cuminum cyminum

Curry leaf − − + − + Leaves of Murraya koenigii

Dill + − + − + Leaves or seeds of Anethum graveolens

Drumstick leaves − − + − − Leaves of Moringa oleifera

Epazote − − − − + Leaves of Levisticum officinale

Fennel + + + − + Seeds of Foeniculum vulgare

Fenugreek + + + − + Seeds and leaves of Trigonella foenum-graecum

Fuki − − − + − Giant butterbur, Petasites japonicus

Galangal + + − − − Laos, root of Alpina

Garlic + + + − + Roots and shoots of Allium sativum

Garcinia indica − − + − − Kokum, dried fruit of Garcinia indica

Gardenia − − − + − Seed of Gardenia augusta or Gardenia jasminoides

Ginger + + + + + Root of Zingiber officinale

Hemp − + − + − Seed or oil of Cannabis sativa

Horseradish + + − − + Root of Armoracia rusticana

Hyssop − − − − + Leaves or oil extract from Hyssopus officinalis

Japanese horseradish − + − − + Wasabi, Eutrema (Wasabia) japonica

Japanese parsley − − − + − Leaves of Oenanthe javanica

Japanese pepper − + − + − Sansho, Zanthoxylum piperitum

Juniper + − − − − Berries of Juniperus

Lavender − + − − − Flowers of Lavandula

Lemon balm − − − − + Leaves of Melissa officinalis

Lemon verbena − − − − + Leaves of Lippia citriodora

Lemongrass + + + − + Leaves or oil of Cymbopogon
Continued
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Spice B&S China india Japan Global Notes

Licorice − + − − − Root of Glycyrrhiza glabra or Glycyrrhiza uralensis

Lilium − + − + − Bulb or root of Lilium

Long pepper − + − − − Fruit of Piper longum

Lovage − − − − + Seeds or leaves of Levisticum officinale

Marjoram + − − − + Leaves of Origanum majorana

Mastic − − − − + Resin of Pistacia lentiscus

Mate − − − − + Leaves of Ilex paraguariensis

Mexican oregano − − − − + Leaves of Lippia graveolens

Mint + + + − + Leaves of Mentha

Myoga − − − + − Japanese ginger, Zingiber mioga

Mitsuba − − − + − Leaves of Cryptotaenia

Mountain pepper − + − − − Fruit of Lindera glauca

Mustard + + + + + Seeds or oil of Brassica alba, Brassica juncea or Brassica 
nigra

Nigella − − + − − Seeds of Nigella sativa

Nutmeg + + + − + Fruit of Myristica fragrans including mace

Onion + + + + + Allium: includes chives, leeks, shallots

Oregano + − + − + Leaves of Origanum vulgare

Paprika + + − − + Dried, powdered Capsicum annum

Parsley + + − − + Leaves of Petroselinum crispum

Peony − + − − − Root of Paeonia (paeonol)

Pepper + + + − + Black and white pepper, Piper nigrum

Peppermint − − − − + Leaves of Mentha piperita

Perilla − + − + − Perilla frutescens var. crispa

Poppy − − + − + Seeds of Papaver somniferum

Pomegranate − − + − + Including anaardana (dried pomegranate seeds)

Radish − + + + + Roots of Raphanus, including daikon (Raphanus sativus), 
mu (Raphanus raphanistrum)

Rose − + + − + Extract from flowers or buds of Rosa indica

Rosemary + + − − + Leaves of Rosmarinus officinalis

Sage + + − − + Leaves of Salvia officinalis

Saffron − − + − + Flower of Crocus sativus

Sandalwood − − + − − Extract from wood of Santalum sp.

Savory + − − − + Leaves of Satureja

Seaweed − + − + + Includes kelp, nori, carageenen

Sesame + + + + + Seeds and oil from Sesamum indicum

Sichuan pepper − + − − − Zanthoxylum simulans or Zanthoxylum bungeanum

Star anise − + + − + Illicium verum

Tamarind + + + − + Fruit of Tamarindus indica

Tarragon + − − − + Leaves of Artemisia dracunculus

Tea − + + − + Leaves or oil of Camellia sinensis

Thyme + − − − + Leaves of Thymus

Toon − + − − − Chunya, Toona sinensis

Tumeric + + + + + Root of Curcuma longa

Vanilla − + + − + Fruit, oil or extract of Vanilla

Vetiver − − + − − Extract or oil from Chrysopogon zizanioides

Wild tumeric − + − − − Root of Curcuma aromatica

We began by including all of the ingredients categorized as ‘spice’ in ref. 2, then added other ingredients that meet the definition of spice in other cuisines. The five sources of recipe data are described in 
Table 1, and how spices were defined and counted are described in Methods and Supplementary Information.

Table 3 | List of spices counted in this study (continued)
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properties, such as vinegar, alcohol or chilli, is associated with risk 
of infection from foodborne pathogens or with health outcomes 
in general. While meat dishes have more spices on average than 

non-meat dishes, this pattern does not seem to be influenced by the 
incidence of foodborne illness or poor health outcomes. There are 
no convincing paths of association connecting spice to temperature 
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Fig. 5 | Geographic sampling bias. To detect sampling bias in our global cuisine database, we compared the distribution of our data across continents with 
four different null models to determine whether our observations were more biased toward some regions than would be expected from a random sample 
of world cuisines. For the first three null models, we sampled 70 countries with replacement (to match our combined dataset) in proportion to their total 
geographic area (area null), in proportion to their population size (population null) or in equal proportion across all countries (N70 country null). We then 
tallied these sampled points by continent. For the fourth null model, we sampled 39 countries (matching our country-level dataset) without replacement 
in equal proportion and then tallied by continent (N39 country null). This plot shows the distribution of expected samples per continent if sampling is 
unbiased. For each plot, a red star marks the value for our database for comparison. The central line in each box is the median value, the box edges are the 
25th and 75th percent quartiles, the lines extend to 1.5 times the interquartile range, and dots represent outlying points beyond that range.
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or infection risk via patterns of biodiversity (spice use is not higher 
where more spices grow), via cultural diversity (more culturally 
diverse areas do not use more spices) or via climate (Fig. 2).

These results do not suggest that poverty causes higher spice 
use, just as they do not suggest that car accidents increase spice use  
(Fig. 4). Instead, they demonstrate that correlations between aspects 
of human cultural groups that show distinct spatial and historical 
patterns, such as infection risk and spice use, should be interpreted 
with caution. Correlates of poverty that are not associated with infec-
tion (such as malnutrition and road deaths) are equally good predic-
tors of spice use as variables that reflect infection risk (foodborne 
illness, early childhood diarrhoea and historical disease prevalence). 
There is also a lack of evidence that other potential antimicrobial 
ingredients, including chilli, alcohol and vinegar, are associated with 
risk of infection. These results demonstrate that there is currently no 
compelling evidence to assign a special explanatory role to risk of 
infection in variation in the spiciness of cuisines, above and beyond 
any other socioeconomic indicators. Spice use has a stronger asso-
ciation with GDP and poor health outcomes from a range of causes. 
The correlation between infection risk and spice appears to be an 
indirect effect of relatively higher spice use in regions with tradi-
tionally lower socioeconomic indicators. It is not possible to isolate 
a cause of this association from these cross-cultural data, but this 
pattern should allow researchers to generate additional explanatory 
hypotheses and collect appropriate variables to test them.

Socioeconomic factors are highly labile, for example, many 
countries have shown rapid increases in GDP and improvement in 
general health outcomes within the past few decades, so it may be 
argued that they are the wrong targets for investigating the role of 
evolutionary forces that may have shaped cultural variation over 
centuries or millennia. However, cuisine is also highly labile, and 
spice use responds rapidly to changing fashions, availability and 
economics31. Commonly used spices are often products of fluctuat-
ing global trade patterns, and many are relatively recent additions to 
many contemporary cuisines. For example, the widespread use of 
chilli in global cuisines (Table 3) postdates patterns of global con-
quest and trade that spread the domesticated chilli from its origins 
in Mexico32,33. Indeed, the economic power of spices is in part driven 
by their transportability, being typically able to be stored for long 
periods, and sold in relatively small quantities for high value. The 
transportability of spices may explain why we find no association 
between the diversity of spices growing within the cuisine area and 
the mean spice per recipe: spices are often used far from where they 
are grown. Associations between spice use, temperature and patho-
gen load have been noted both for contemporary recipes taken 
from internet databases and traditional recipes from cookbooks or 
interviews1,8,34,35, and many of these include spices that are a relative 
recent addition to the cuisine. If the observed associations between 
spice use and pathogen load are due to the role of spices in mitigat-
ing infection risk9, spice use must reflect an ongoing response to lev-
els of threat, not simply historical inertia. Furthermore, foodborne 
illness continues to apply strong mortality pressure on modern 
cultures11. If spice use is under selection for infection risk mitiga-
tion, then the lability of culture and cuisine should allow a nimble 
response to adjust levels of spice use in response to infection threat.

Like many global studies of cultural evolution, our study is 
biased by the available data36. Previous tests of the hypothesis that 
spicy food is a response to higher temperature have either focussed 
on a single region (such as China35 or Japan8), or used a global data-
set that contained an overrepresentation of recipes from European 
cuisines (for example 30% of the cuisines from Europe, even though 
it represents only 10% of the world’s population2). We have greatly 
expanded global representation: in particular, our dataset is less 
biased toward European cultures, and the sampling of cuisines 
from mainland Asia is more in line with global population (Fig. 5).  
However, cuisines from Africa and South America are relatively 

underrepresented in our combined database. We hope future stud-
ies will fill in these large gaps, and provide more detailed sampling 
in underrepresented regions.

Spicier food tends to be found in hotter countries (Fig. 1), but 
analysis of variation in global cuisines does not provide support 
for the hypothesis that spice use patterns represent cultural adap-
tation to infection risk mitigation. This study has highlighted how 
an apparently simple question—why do hot countries have spicy 
food?—is very difficult to answer clearly because of the intertwined 
nature of cultural, environmental and socioeconomic variables. 
However, we can use statistical analyses to test the relative strengths 
of association between variables and we can generate additional 
predictions that provide independent tests of hypotheses connect-
ing those variables. Here we show that the relationship between 
temperature and spice use is an artefact of spatial and phylogenetic 
autocorrelation—that is, the association between temperature and 
spice is largely driven by similarities between neighbours and rela-
tives, which tend to have both similar cuisines and similar climates, 
causing an incidental correlation between spiciness of food and 
the average temperature. When we account for variation between 
cuisines taking distance and relationships into account, there is no 
evidence that temperature explains variation in spice use. We dem-
onstrate that spice use and infection risk are related through socio-
economic variables, such as poverty and poor health outcomes, with 
no convincing evidence that variation in spice use is best explained 
as a direct association between infection risk and inclusion of anti-
microbial ingredients. This conclusion is supported by a lack of 
relationship between other antimicrobial ingredients and infection 
risk. The association between temperature and spice use highlights 
that, as databases grow and studies of cultural evolution undergo a 
growth in popularity, we need to develop more sophisticated ways 
to evaluate the relative support for different explanatory hypotheses 
using comparative analyses, without risking being led astray by inci-
dental cross-cultural correlations.

methods
Cuisines. We aimed to test whether the relationship between spice use and average 
temperature supports the hypothesis that higher risk of infection from foodborne 
pathogens selects for increased spice use1,2,10. In addition to analysing the original 
dataset2 of Billing and Sherman (1998), we constructed a dataset consisting of 
cuisines from 31 national, 2 super-national and 37 sub-national regions2,8,34,35,37 
(Table 1). These data provide greater power to test the adaptive cuisine hypothesis, 
in a number of key ways. First, the expanded dataset has nearly twice as many 
cuisines, more than double the number of different spices and over six times as 
many recipes as the original study (Table 1). Second, we increase both the coverage 
and resolution in the data, with a greater global coverage, including 37 sub-national 
cuisines. In particular, this allows us to bring a finer level of resolution to India 
and China, which cover a very large geographic extent, are environmentally 
heterogeneous and have diverse cuisines, and contain a substantial proportion of 
the world population (Fig. 5). Third, by using large databases of recipes, we are 
able to derive a finer level of detail on cuisines, including not only mean spices but 
also the presence of specific ingredients such as meat-based ingredients, alcohol, 
vinegar, and chilli. We are also able to control for number of ingredients per 
recipe as a measure of overall recipe complexity. Fourth, we use the geographic 
area covered by the cuisine to derive a range of spatial, environmental and 
socioeconomic variables, and to account for spatial autocorrelation in the data. 
Fifth, we use inferred relationships between cuisines to account for phylogenetic 
non-independence in the data.

We analyse three measures of spice use for each cuisine: mean number of spices 
per recipe, median number of spices per recipe, and the total number of spices 
used in a cuisine (that is, the list of all spices included in any recipe assigned to 
that cuisine). Spice does not have an unambiguous definition, but here we take it 
to mean an ingredient added to a dish in relatively small quantities, primarily for 
flavour, colour or smell, rather than for bulk, nutrition or pharmaceutical effects. 
This definition follows Billing and Sherman, but while they only count plant 
products as spices2, we extend the category to natural food additives derived from 
seaweed (Table 3). There are many other spices included in regional cuisines that 
are not listed in Billing and Sherman2. For example, asafoetida (hing powder) was 
not included in Billing and Sherman2, but it is used as a spice in many cuisines, and 
is considered to have antimicrobial properties38. Given that the adaptive cuisine 
hypothesis concerns the antimicrobial effects of spices as food additives, it is 
important to include relevant region-specific spices in addition to those recorded 
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in the Billing and Sherman dataset8,35. Therefore we expanded the list of spices 
(Table 3) to include ingredients from the regional cuisines that are added to recipes 
in relatively small quantities for taste or other properties, as long as we could find 
published studies suggesting that they had antimicrobial activity (Supplementary 
Table 1).

Some ingredients could be considered either a vegetable in their own right 
or as a spice additive. For example, onion and sweet pepper were included in the 
spice list in Billing and Sherman2, whether they were used as a flavour additive or a 
main ingredient, on the grounds that they contribute antimicrobial phytochemicals 
to the dishes. For the same reason, we include Japanese radish as a spice, because 
radish can contain antimicrobial compounds, although the amount depends both 
on the variety of radish and the mode of preparation8,39. We also count seaweed, 
whether used as a main ingredient or as an additive (for example, as included in 
Japanese seven spice), as it has reported antimicrobial properties and can be used 
to protect food against spoilage40–42. When in doubt as to whether to include an 
ingredient as a spice or not, we looked for evidence in the scientific literature that 
the ingredient has antimicrobial or preservative properties (some examples are 
presented in Supplementary Table 1).

Because the hypothesis being tested is that spices help to protect food 
from spoilage due to their antimicrobial activities and therefore reduce risk of 
food poisoning on consumption, we only count those additives that may have 
an antimicrobial effect on the food itself, not ingredients considered to have 
pharmaceutical benefits to the consumer of the food. For example, we include 
amaranth leaf as a spice because, in addition to being been used as a traditional 
medicine in many cultures, it has been shown to have antimicrobial activity43,44. 
Similarly, we count peony root (paeonol), lily roots (Lilium brownii), licorice 
(G. glabra and chinese licorice G. uralensis), toon (Toona sinensis) and artemisia 
(Artemisia annua) as spices: these are traditional medicines that have also been 
reported to have broad antimicrobial effect45–51. However, we do not include 
ingredients added as aspects of traditional medicine if there is no additional 
evidence of antimicrobial effects on foods. For example, while Zhu et al.35 count 
fundamental medicinal herbs such as Rehmannia glutinosa (地黄) and safflower 
(Carthamus tinctorius; 红花) as spices, they are not included in our list due to lack 
of documentation of antimicrobial activity, but we do include fundamental herbs 
that have documented antimicrobial effects such as tea (茶叶) and Cannabis sativa 
(大麻; counted as hemp (Table 3)).

For the purposes of counting spices per recipe, multiple ingredients from the 
same category in one recipe are counted as a single spice. Following Billing and 
Sherman2, we count leeks, chives and onions in a single category (onion). We use 
single category of spice derived from Capsicum species: chilli (including cayenne), 
capsicum (bell peppers) and paprika, however for the separate analysis of chilli we 
have two categories, all Capsicum and hot chilli only. Garlic sprouts are counted 
as garlic as they contain some of the key antimicrobial chemicals from garlic52. 
Similarly, we record different varieties of the same spice in the same category: 
for example, a recipe calling for black, white and green cardamom would have 
cardamom counted as one spice not three. Following Ohtsubo (2009), we combine 
all kinds of citrus (including lemon, lime, yuzu and orange peel) into a single 
category8. Sesame oil is counted as sesame53. In general, we grouped together spices 
that are closely related and have the same active chemical components. Black and 
white pepper are both from Piper nigrum, and so are counted as a single category, 
but different pepper species are counted as separate categories; for example, 
long pepper (P. longum), mountain pepper (Lindera glauca), Japanese pepper 
(Zanthoxylum piperitum) and Sichuan pepper (Z. simulans and Z. bungeanum),

Many recipes call for a premixed blend of spices—for example, curry powders 
in Indian cuisines and cooking sauces in Chinese cuisine—so we record the 
spices typically included in that mix. Supplementary Table 2 lists the spice mixes 
recorded in any of the recipes included in our analyses. The precise ingredients for 
each spice mix may vary between households or between commercially available 
powders and sauces, but we aimed to include the spices typically associated with 
each mix. For example, a typical garam masala spice mix might contain eight 
spices (coriander seeds, cumin seeds, cardamom seeds, peppercorns, fennel seeds, 
mustard seeds, cloves and red chillies), but the number and type of spices might 
vary between particular blends.

The relationship between temperature and spice has been suggested to apply 
more strongly to meat-based dishes than to vegetable dishes10, so where possible 
we have recorded spices for both meat and vegetable recipes separately. For this 
purpose, seafood, meat-based soups and stocks are counted as meat. Four of the 
regional Indian cuisines are vegetarian so have no meat recipes listed.

Following Ohtsubu8 and Zhu et al.35, we record the use of vinegar and 
alcohol in recipes because it is proposed to have antimicrobial benefits in food 
preparation54. Although salt also has food preservative properties, it has not been 
included as a spice in previous studies2,8,35, and is not consistently recorded in the 
recipe databases, so cannot be included in this analysis.

Where possible, we used all listed ingredients from each recipe (including both 
spice and non-spice ingredients) to calculate the average number of ingredients 
per recipe, and the total for the cuisine. This was not possible for the Billing 
and Sherman data2, for which only average values for spice are provided, nor for 
the Ohtsubo data8, which records only general categories of ingredients such as 
‘vegetable’. However, for the Chinese, Indian and global (CulinaryDB) databases, 

we had lists of all ingredients for each recipe (Table 1). We removed any obvious 
duplicates—for example, if several different kinds of chicken meat were included 
in a recipe, we counted it once as ‘chicken’. We also excluded items listed in the 
ingredients that were not foods, such as paper. We excluded a small number of 
Chinese ingredients that did not have a clear translation into English. The number 
of ingredients may therefore contain some errors but given the size of the databases 
for which we have ingredient lists (28,347 recipes), we think that the mean number 
of ingredients per recipe will give an approximate indication of recipe complexity.

Autocorrelation between cuisines. We need to identify cuisines with a defined 
area on the global map in order to correct for spatial autocorrelation in the analysis 
and to estimate climate, biodiversity and population data. This does not need to be 
a perfect representation of the spatial location of different cuisines: we expect that 
in reality cuisines will not have hard borders, will overlap in space and may change 
location over time. But an approximate location allows to make some correction 
for spatial proximity and provides a way of estimating environmental data for each 
cuisine. For country-level data, R polygons describing the national borders were 
retrieved from the R package rworldmap55,56. For sub-national regions, we used the 
Global Administrative Areas database57 to produce a map file that can be read in 
R. We record the area of each cuisine based on these distributions (in m2). Once 
each cuisine was represented by a map polygon, we used an equal area projection 
and the gCentroid function in R (RGeos package58) to produce a geographic 
midpoint for each of these polygons and record the latitude and longitude of 
this midpoint. The association between each cuisine and a map area allows us 
to calculate a number of variables that represent environmental factors of those 
regions. Clearly, for cuisines with a large geographical extent, we expect that the 
average environmental data will not be an accurate representation of conditions in 
every part of that area, instead it will be a reflection of the typical conditions the 
cuisine is found in. Most published studies identifying environmental or biological 
correlates of cuisine have used average temperature for a country or region to 
represent the climate, even for countries with a wide range of climatic variability 
such as Australia2. Details of cuisine areas definitions and environmental variables 
are given in the Supplementary Information.

To correct for covariation due to the relatedness of cultures, we need a way 
to express the expected level of similarity between cuisines due to common 
descent. For the purposes of this analysis, we use a hierarchical classification of 
the dominant language for each region to give an indication of likely patterns of 
cultural similarity (details in the Supplementary Information). This classification 
does not represent an evolutionary history, as we do not expect cultural histories 
to exactly follow a bifurcating pattern of diversification and divergence, nor 
do we expect dominant language to be a perfect representation of the patterns 
of relatedness among cuisines (for example, in some cases this approach may 
group cuisines that have related dominant languages through shared colonial 
history). However, the requirement for phylogenetic correction in cross-cultural 
comparisons does not depend on having a perfect representation of these patterns 
of covariation: any information we can provide on covariation due to historical 
relationships is better than using no information on relatedness at all5,21,59–62. We 
test the robustness of our conclusions to assumptions made about relationships 
between cuisines by conducting analyses on an alternative classification (see 
Supplementary Information).

Infection risk. We include data from the World Health Organization on foodborne 
illness, which is summarized for 14 world regions11: we gave each cuisine the value 
for the region it is found in. We used the median number of foodborne illnesses 
per 100,000 people from diarrhoeal disease agents, invasive infectious disease 
agents, helminths, chemicals and toxins, from the 2010 figures provided in ref. 11. 
We include country-specific estimates of the incidence of diarrhoea in children 
under the age of 2 yr (per 100 children)12, estimated from household survey 
data which records all instances of diarrhoea from any cause. We also include a 
measure of historical pathogen load which has been proposed as a predictor of 
spice use9. Historical disease prevalence (P2_9) is a combined index based on past 
epidemiological impact of nine human diseases on a normalized averaged scale9: 
leishmanias (transmitted by sandfly bites), schistosomes (infection through skin), 
trypanosomes (insect bite), leprosy (human contact), malaria (mosquito bite), 
typhus (lice, fleas, mites and ticks), filariae (mosquito), dengue (mosquito) and 
tuberculosis (contact)9. These diseases are spread by environmental contamination, 
contact between humans or by vector rather than by contaminated food (though 
the possibility of foodborne infection cannot be discounted for tuberculosis63 and 
some trypanosomes; for example, Chagas disease64). Historical pathogen load is 
available at country level, so we gave sub-national cuisines the value recorded for 
the whole country.

Climate and biodiversity. We recorded temperature, latitude, precipitation, 
temperature seasonality, precipitation seasonality, and mean growing season 
for every cuisine area as well as the biological and cultural diversity of each area 
(details are in Supplementary Information). Spices are not necessarily used where 
they grow: in fact, spices have been both a driver and an indicator of global 
patterns of trade31. However, many spices and herbs are used in the area they are 
grown in, so we aimed to control for the possibility that the relationship between 
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number of spices and temperature is an indirect result of the biodiversity of a 
region influencing the variety of ingredients available to be incorporated into 
recipes. To represent spatial patterns of plant diversity, we estimated the average 
number of plant species and crop species found per unit area in each region, and 
used the Global Biodiversity Information Facility to extract occurrence records for 
each spice plant in Table 3 (details in Supplementary Information).

Socioeconomic and human population variables. Many aspects of culture 
covary, generating a rich potential for correlations between cultural variables even 
if they have no direct causal connection4,21. Therefore, we included a number of 
broad-brush socioeconomic measures as a way of detecting and controlling for 
covariation, including population density, life expectancy and GDPpc. Population 
density was estimated for cuisine areas, and GDPpc and life expectancy are 
available for many sub-national regions (See Supplementary Table 1). In addition 
to analysing this national and sub-national level data, we generated regional level 
averages to test whether differences in their predictive power were due to different 
resolutions. To represent food availability and diet, we estimated rates of child 
malnutrition for each cuisine area. To represent poor health outcomes that are not 
connected to disease or malnutrition, we included number of road traffic fatalities 
per head of population. Cultural diversity within a cuisine area is represented by 
the number of autochthonous languages found within that area. We also recorded 
whether each cuisine is in a country that has been a colony. Details of sources of all 
variables are given in the Supplementary Information.

Statistical analysis. Modelling autocorrelation. We used the method of Hua et al.9,  
which is based on Freckleton and Jetz8, to model autocorrelation due to proximity 
and relationship between cuisines. In brief, the method constrains the residual 
correlation in spice use as a linear function of their spatial proximity and 
phylogenetic similarity and estimates the overall contribution of autocorrelation 
to residual correlation and the relative proportion of autocorrelation due to spatial 
proximity versus phylogenetic similarity, using a maximum likelihood approach. 
This method allows us to model how much of the similarity between cuisines can 
be explained by the spatial location and similarity to relatives, so that we can look 
for evidence of meaningful associations between variables above and beyond the 
patterns of similarity due to proximity and relatedness4,65. Full details of the method 
are given in the Supplementary Information. The maximum likelihood estimates 
of the intercept and β are derived by generalized least squares. Some variables 
are right skewed, so we applied log transformation to each of these variables if 
transforming the variable increased the maximum likelihood of the model that 
includes the variable, because increasing likelihood suggests a better fit of residuals 
in the response variable to a multivariate normal distribution. Transformed 
variables are named with suffix ‘_tr’ in Supplementary Data 1. All variables were 
scaled to have mean of zero and variance of one before the analyses, so the value 
of regression coefficient can be interpreted as the amount of change in standard 
deviations in the response variable with a 1 s.d. change in the independent variable.

Power analysis. Simulation has been widely applied to assess the power of a 
generalized least squares analysis66. To assess the power of our method, we 
simulated 1,000 datasets with the same size as the observed dataset and with a 
specific regression coefficient as effect size. Then, we applied our method with 
significance level 0.05 to each simulated dataset and estimated the power of the 
method as the proportion of simulated datasets from which the method detects 
the effect. For each dataset, we simulated the independent variable from a standard 
normal distribution, and simulated the residual in response variable from a 
multivariate normal distribution with covariance matrix fixed to its maximum 
likelihood estimate from the observed dataset under a regression model including 
only intercept. The final response variable is the independent variable multiplied 
by the regression coefficient plus the residual. As a result, the regression coefficient 
in the simulation is comparable to the regression coefficient estimated from the 
observed dataset (Supplementary Fig. 1).

Model comparisons. We applied likelihood ratio tests and Bayes factors to test 
if adding an independent variable to a model significantly increased the model 
fit. Bayes factor for the null result (the absence of a relationship) is calculated 
as the marginal likelihood of the null model (without the relationship) over the 
alternative model (with the relationship). Conversely, Bayes factor for the presence 
of a relationship is calculated as the marginal likelihood of the alternative model 
over the null model.

A significant likelihood ratio test with level 0.05 and a Bayes factor larger than 
1 were considered evidence that the addition of the independent variable increases 
model fit, with Bayes factor larger than 3 suggesting strong evidence. This was 
used to test if spice use is significantly associated with an independent variable 
or if the link between spice use and foodborne illness can be fully explained by 
their covariation with a third variable. For example, if adding foodborne illness 
to a model including a measure of poverty significantly increases the model fit, 
then we conclude that the link between spice use and foodborne illness cannot 
be fully explained by their covariation with the measure of poverty. To avoid 
numerically evaluating the Bayes factor, we used multivariate normal inverse 
gamma distribution as the conjugate prior for regression coefficients and residual 

variance67 and analytically derived the marginal likelihood of a model conditional 
on the best fit correlation structure in the model (Supplementary Information).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This study uses only previously published data and all published sources are given 
in the Methods and Supplementary Information (Table 1). All variables analysed 
are provided in Supplementary Tables 4 and 5.

Code availability
All code used is available by request.
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